
Evaluate the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Answer
581.4k+ views
Hint: Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Using the property ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ , write ${x^{p - q}}$ in fraction form in the second term of the given sum of two fractions.
Then, take LCM as per the requirements and solve the sum further to get the required answer.
Complete step-by-step answer:
Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Now, in the denominator of the second term of the given sum, there is ${x^{p - q}}$ .
Since, we know that, ${a^{m - n}}$ can be written as $\dfrac{{{a^m}}}{{{a^n}}}$ , i.e. ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ .
So, using the above property of powers and exponents, we can write ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ .
Thus, $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p}}}{{{x^q}}} + 1}}$ .
Now, taking LCM in the denominator of the second term, we get
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p} + {x^q}}}{{{x^q}}}}}$
Also, $\dfrac{1}{{\dfrac{1}{a}}} = a$
$\therefore \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{{{x^q}}}{{{x^p} + {x^q}}}$
Again, taking LCM in the above sum will give
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p} + {x^q}}}{{{x^p} + {x^q}}} = 1$
Thus, the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ is 1.
Note: Some properties of powers and exponents are given as follows:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
\dfrac{1}{{\dfrac{1}{a}}} = a \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Remember these properties.
Using the property ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ , write ${x^{p - q}}$ in fraction form in the second term of the given sum of two fractions.
Then, take LCM as per the requirements and solve the sum further to get the required answer.
Complete step-by-step answer:
Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Now, in the denominator of the second term of the given sum, there is ${x^{p - q}}$ .
Since, we know that, ${a^{m - n}}$ can be written as $\dfrac{{{a^m}}}{{{a^n}}}$ , i.e. ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ .
So, using the above property of powers and exponents, we can write ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ .
Thus, $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p}}}{{{x^q}}} + 1}}$ .
Now, taking LCM in the denominator of the second term, we get
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p} + {x^q}}}{{{x^q}}}}}$
Also, $\dfrac{1}{{\dfrac{1}{a}}} = a$
$\therefore \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{{{x^q}}}{{{x^p} + {x^q}}}$
Again, taking LCM in the above sum will give
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p} + {x^q}}}{{{x^p} + {x^q}}} = 1$
Thus, the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ is 1.
Note: Some properties of powers and exponents are given as follows:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
\dfrac{1}{{\dfrac{1}{a}}} = a \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Remember these properties.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

