
Evaluate the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Answer
563.1k+ views
Hint: Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Using the property ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ , write ${x^{p - q}}$ in fraction form in the second term of the given sum of two fractions.
Then, take LCM as per the requirements and solve the sum further to get the required answer.
Complete step-by-step answer:
Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Now, in the denominator of the second term of the given sum, there is ${x^{p - q}}$ .
Since, we know that, ${a^{m - n}}$ can be written as $\dfrac{{{a^m}}}{{{a^n}}}$ , i.e. ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ .
So, using the above property of powers and exponents, we can write ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ .
Thus, $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p}}}{{{x^q}}} + 1}}$ .
Now, taking LCM in the denominator of the second term, we get
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p} + {x^q}}}{{{x^q}}}}}$
Also, $\dfrac{1}{{\dfrac{1}{a}}} = a$
$\therefore \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{{{x^q}}}{{{x^p} + {x^q}}}$
Again, taking LCM in the above sum will give
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p} + {x^q}}}{{{x^p} + {x^q}}} = 1$
Thus, the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ is 1.
Note: Some properties of powers and exponents are given as follows:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
\dfrac{1}{{\dfrac{1}{a}}} = a \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Remember these properties.
Using the property ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ , write ${x^{p - q}}$ in fraction form in the second term of the given sum of two fractions.
Then, take LCM as per the requirements and solve the sum further to get the required answer.
Complete step-by-step answer:
Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Now, in the denominator of the second term of the given sum, there is ${x^{p - q}}$ .
Since, we know that, ${a^{m - n}}$ can be written as $\dfrac{{{a^m}}}{{{a^n}}}$ , i.e. ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ .
So, using the above property of powers and exponents, we can write ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ .
Thus, $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p}}}{{{x^q}}} + 1}}$ .
Now, taking LCM in the denominator of the second term, we get
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p} + {x^q}}}{{{x^q}}}}}$
Also, $\dfrac{1}{{\dfrac{1}{a}}} = a$
$\therefore \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{{{x^q}}}{{{x^p} + {x^q}}}$
Again, taking LCM in the above sum will give
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p} + {x^q}}}{{{x^p} + {x^q}}} = 1$
Thus, the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ is 1.
Note: Some properties of powers and exponents are given as follows:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
\dfrac{1}{{\dfrac{1}{a}}} = a \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Remember these properties.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

