
Evaluate the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Answer
555.9k+ views
Hint: Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Using the property ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ , write ${x^{p - q}}$ in fraction form in the second term of the given sum of two fractions.
Then, take LCM as per the requirements and solve the sum further to get the required answer.
Complete step-by-step answer:
Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Now, in the denominator of the second term of the given sum, there is ${x^{p - q}}$ .
Since, we know that, ${a^{m - n}}$ can be written as $\dfrac{{{a^m}}}{{{a^n}}}$ , i.e. ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ .
So, using the above property of powers and exponents, we can write ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ .
Thus, $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p}}}{{{x^q}}} + 1}}$ .
Now, taking LCM in the denominator of the second term, we get
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p} + {x^q}}}{{{x^q}}}}}$
Also, $\dfrac{1}{{\dfrac{1}{a}}} = a$
$\therefore \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{{{x^q}}}{{{x^p} + {x^q}}}$
Again, taking LCM in the above sum will give
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p} + {x^q}}}{{{x^p} + {x^q}}} = 1$
Thus, the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ is 1.
Note: Some properties of powers and exponents are given as follows:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
\dfrac{1}{{\dfrac{1}{a}}} = a \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Remember these properties.
Using the property ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ , write ${x^{p - q}}$ in fraction form in the second term of the given sum of two fractions.
Then, take LCM as per the requirements and solve the sum further to get the required answer.
Complete step-by-step answer:
Here, we are asked to find the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ .
Now, in the denominator of the second term of the given sum, there is ${x^{p - q}}$ .
Since, we know that, ${a^{m - n}}$ can be written as $\dfrac{{{a^m}}}{{{a^n}}}$ , i.e. ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$ .
So, using the above property of powers and exponents, we can write ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ .
Thus, $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p}}}{{{x^q}}} + 1}}$ .
Now, taking LCM in the denominator of the second term, we get
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{\dfrac{{{x^p} + {x^q}}}{{{x^q}}}}}$
Also, $\dfrac{1}{{\dfrac{1}{a}}} = a$
$\therefore \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{{{x^q}}}{{{x^p} + {x^q}}}$
Again, taking LCM in the above sum will give
$\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}} = \dfrac{{{x^p} + {x^q}}}{{{x^p} + {x^q}}} = 1$
Thus, the value of $\dfrac{{{x^p}}}{{{x^p} + {x^q}}} + \dfrac{1}{{{x^{p - q}} + 1}}$ is 1.
Note: Some properties of powers and exponents are given as follows:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
\dfrac{1}{{\dfrac{1}{a}}} = a \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Remember these properties.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

