
Evaluate the value of $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ .
Answer
562.5k+ views
Hint: Here, the given fractional value is $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ and we need to find the value of the given fractional value.
Then, find the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ by using the formulae given below
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
Thus, substitute the values in the given fraction and find the required answer.
Complete step-by-step answer:
Here, the given fractional value is $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ .
Since, we know that,
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
So, we will simplify the term $\cos x - \cos 3x$ of the fraction as
$
\cos x - \cos 3x = - 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{4x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 2x\sin \left( { - x} \right) \\
= 2\sin 2x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
$
Similarly, repeating the above steps for $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$
So,
$
\sin 8x + \sin 2x = 2\sin \left( {\dfrac{{8x + 2x}}{2}} \right)\cos \left( {\dfrac{{8x - 2x}}{2}} \right) \\
= 2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{6x}}{2}} \right) \\
= 2\sin 5x\cos 3x \\
$
$
\sin 5x - \sin x = 2\cos \left( {\dfrac{{5x + x}}{2}} \right)\sin \left( {\dfrac{{5x - x}}{2}} \right) \\
= 2\cos \left( {\dfrac{{6x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right) \\
= 2\cos 3x\sin 2x \\
$
\[
\cos 4x - \cos 6x = - 2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\sin \left( {\dfrac{{4x - 6x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 5x\sin \left( { - x} \right) \\
= 2\sin 5x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
\]
Thus, we will substitute the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ in the given fractional value.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = \dfrac{{\left( {2\sin 2x\sin x} \right)\left( {2\sin 5x\cos 3x} \right)}}{{\left( {2\cos 3x\sin 2x} \right)\left( {2\sin 5x\sin x} \right)}}$
Here, from the above step it is clear that, every term of the fraction will get eliminated. So, the value of the given fractional value will be 0.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = 1$
Thus, the value of the given fractional value $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ is 1.
Note: While solving questions like these in which many identities are used at once, we should carefully substitute the values in the question because there is a high chance that we mess up with the signs and a change of even one sign is enough to get us a completely wrong answer.
Then, find the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ by using the formulae given below
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
Thus, substitute the values in the given fraction and find the required answer.
Complete step-by-step answer:
Here, the given fractional value is $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ .
Since, we know that,
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
So, we will simplify the term $\cos x - \cos 3x$ of the fraction as
$
\cos x - \cos 3x = - 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{4x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 2x\sin \left( { - x} \right) \\
= 2\sin 2x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
$
Similarly, repeating the above steps for $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$
So,
$
\sin 8x + \sin 2x = 2\sin \left( {\dfrac{{8x + 2x}}{2}} \right)\cos \left( {\dfrac{{8x - 2x}}{2}} \right) \\
= 2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{6x}}{2}} \right) \\
= 2\sin 5x\cos 3x \\
$
$
\sin 5x - \sin x = 2\cos \left( {\dfrac{{5x + x}}{2}} \right)\sin \left( {\dfrac{{5x - x}}{2}} \right) \\
= 2\cos \left( {\dfrac{{6x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right) \\
= 2\cos 3x\sin 2x \\
$
\[
\cos 4x - \cos 6x = - 2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\sin \left( {\dfrac{{4x - 6x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 5x\sin \left( { - x} \right) \\
= 2\sin 5x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
\]
Thus, we will substitute the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ in the given fractional value.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = \dfrac{{\left( {2\sin 2x\sin x} \right)\left( {2\sin 5x\cos 3x} \right)}}{{\left( {2\cos 3x\sin 2x} \right)\left( {2\sin 5x\sin x} \right)}}$
Here, from the above step it is clear that, every term of the fraction will get eliminated. So, the value of the given fractional value will be 0.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = 1$
Thus, the value of the given fractional value $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ is 1.
Note: While solving questions like these in which many identities are used at once, we should carefully substitute the values in the question because there is a high chance that we mess up with the signs and a change of even one sign is enough to get us a completely wrong answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

