
Evaluate the value of $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ .
Answer
576.3k+ views
Hint: Here, the given fractional value is $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ and we need to find the value of the given fractional value.
Then, find the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ by using the formulae given below
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
Thus, substitute the values in the given fraction and find the required answer.
Complete step-by-step answer:
Here, the given fractional value is $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ .
Since, we know that,
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
So, we will simplify the term $\cos x - \cos 3x$ of the fraction as
$
\cos x - \cos 3x = - 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{4x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 2x\sin \left( { - x} \right) \\
= 2\sin 2x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
$
Similarly, repeating the above steps for $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$
So,
$
\sin 8x + \sin 2x = 2\sin \left( {\dfrac{{8x + 2x}}{2}} \right)\cos \left( {\dfrac{{8x - 2x}}{2}} \right) \\
= 2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{6x}}{2}} \right) \\
= 2\sin 5x\cos 3x \\
$
$
\sin 5x - \sin x = 2\cos \left( {\dfrac{{5x + x}}{2}} \right)\sin \left( {\dfrac{{5x - x}}{2}} \right) \\
= 2\cos \left( {\dfrac{{6x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right) \\
= 2\cos 3x\sin 2x \\
$
\[
\cos 4x - \cos 6x = - 2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\sin \left( {\dfrac{{4x - 6x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 5x\sin \left( { - x} \right) \\
= 2\sin 5x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
\]
Thus, we will substitute the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ in the given fractional value.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = \dfrac{{\left( {2\sin 2x\sin x} \right)\left( {2\sin 5x\cos 3x} \right)}}{{\left( {2\cos 3x\sin 2x} \right)\left( {2\sin 5x\sin x} \right)}}$
Here, from the above step it is clear that, every term of the fraction will get eliminated. So, the value of the given fractional value will be 0.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = 1$
Thus, the value of the given fractional value $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ is 1.
Note: While solving questions like these in which many identities are used at once, we should carefully substitute the values in the question because there is a high chance that we mess up with the signs and a change of even one sign is enough to get us a completely wrong answer.
Then, find the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ by using the formulae given below
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
Thus, substitute the values in the given fraction and find the required answer.
Complete step-by-step answer:
Here, the given fractional value is $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ .
Since, we know that,
$
\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\
\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
\cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\
$
So, we will simplify the term $\cos x - \cos 3x$ of the fraction as
$
\cos x - \cos 3x = - 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{4x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 2x\sin \left( { - x} \right) \\
= 2\sin 2x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
$
Similarly, repeating the above steps for $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$
So,
$
\sin 8x + \sin 2x = 2\sin \left( {\dfrac{{8x + 2x}}{2}} \right)\cos \left( {\dfrac{{8x - 2x}}{2}} \right) \\
= 2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{6x}}{2}} \right) \\
= 2\sin 5x\cos 3x \\
$
$
\sin 5x - \sin x = 2\cos \left( {\dfrac{{5x + x}}{2}} \right)\sin \left( {\dfrac{{5x - x}}{2}} \right) \\
= 2\cos \left( {\dfrac{{6x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right) \\
= 2\cos 3x\sin 2x \\
$
\[
\cos 4x - \cos 6x = - 2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\sin \left( {\dfrac{{4x - 6x}}{2}} \right) \\
= - 2\sin \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\
= - 2\sin 5x\sin \left( { - x} \right) \\
= 2\sin 5x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\
\]
Thus, we will substitute the values of $\cos x - \cos 3x$ , $\sin 8x + \sin 2x$ , $\sin 5x - \sin x$ and $\cos 4x - \cos 6x$ in the given fractional value.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = \dfrac{{\left( {2\sin 2x\sin x} \right)\left( {2\sin 5x\cos 3x} \right)}}{{\left( {2\cos 3x\sin 2x} \right)\left( {2\sin 5x\sin x} \right)}}$
Here, from the above step it is clear that, every term of the fraction will get eliminated. So, the value of the given fractional value will be 0.
$\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = 1$
Thus, the value of the given fractional value $\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}}$ is 1.
Note: While solving questions like these in which many identities are used at once, we should carefully substitute the values in the question because there is a high chance that we mess up with the signs and a change of even one sign is enough to get us a completely wrong answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

