
Evaluate the limit of the given function: $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}$
A) $ - 1$
B) $0$
C) $1$
D) $2$
Answer
480k+ views
Hint: There are various properties of the limit, that are very useful to evaluate the limit of the functions, some of them are:
$\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}}$ where $\mathop {\lim }\limits_{x \to a} g(x) \ne 0$
$\mathop {\lim }\limits_{x \to a} [f(x) + g(x)] = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} g(x)$
$\mathop {\lim }\limits_{x \to a} [f(x).g(x)] = \mathop {\lim }\limits_{x \to a} f(x).\mathop {\lim }\limits_{x \to a} g(x)$
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
Complete step-by-step solution:
We are given a function $f(x) = \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}$ and we are required to evaluate the limit of the function at point $0$. That is, we need to find the value of
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}$
Since, the limit of the function $\dfrac{{\sin x}}{x}$ at point $0$ is equal to $1$. It can be written as $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$.
To solve the given question, we have to make every term of the from $\sin ax$ in the form $\dfrac{{\sin ax}}{{ax}}$, by multiplying and dividing $\sin ax$ by $ax$.
Write the given function again by multiplying and dividing $\sin ax$ by $ax$.
$\mathop {\lim }\limits_{x \to 0} \dfrac{{7x\dfrac{{\sin 7x}}{{7x}} - 5x\dfrac{{\sin 5x}}{{5x}} + 3x\dfrac{{\sin 3x}}{{3x}} - x\dfrac{{\sin x}}{x}}}{{6x\dfrac{{\sin 6x}}{{6x}} - 4x\dfrac{{\sin 4x}}{{4x}} + 2x\dfrac{{\sin 2x}}{{2x}}}}$
Now, use the Law of limit given by $\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}}$ where $\mathop {\lim }\limits_{x \to a} g(x) \ne 0$
$\dfrac{{\mathop {\lim }\limits_{x \to 0} \left[ {7x\dfrac{{\sin 7x}}{{7x}} - 5x\dfrac{{\sin 5x}}{{5x}} + 3x\dfrac{{\sin 3x}}{{3x}} - x\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} \left[ {6x\dfrac{{\sin 6x}}{{6x}} - 4x\dfrac{{\sin 4x}}{{4x}} + 2x\dfrac{{\sin 2x}}{{2x}}} \right]}}$
Now, use the Law of limit given by $\mathop {\lim }\limits_{x \to a} [f(x) + g(x)] = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} g(x)$
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} \left[ {7x\dfrac{{\sin 7x}}{{7x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {5x\dfrac{{\sin 5x}}{{5x}}} \right] + \mathop {\lim }\limits_{x \to 0} \left[ {3x\dfrac{{\sin 3x}}{{3x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {x\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} \left[ {6x\dfrac{{\sin 6x}}{{6x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {4x\dfrac{{\sin 4x}}{{4x}}} \right] + \mathop {\lim }\limits_{x \to 0} \left[ {2x\dfrac{{\sin 2x}}{{2x}}} \right]}}\]
Now, use the Law of limit given by $\mathop {\lim }\limits_{x \to a} [f(x).g(x)] = \mathop {\lim }\limits_{x \to a} f(x).\mathop {\lim }\limits_{x \to a} g(x)$ ,
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 7x}}{{7x}}} \right] - \mathop {\lim }\limits_{x \to 0} 5x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 5x}}{{5x}}} \right] + \mathop {\lim }\limits_{x \to 0} 3x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 3x}}{{3x}}} \right] - \mathop {\lim }\limits_{x \to 0} x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} 6x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 6x}}{{6x}}} \right] - \mathop {\lim }\limits_{x \to 0} 4x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 4x}}{{4x}}} \right] + \mathop {\lim }\limits_{x \to 0} 2x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 2x}}{{2x}}} \right]}}\]
Since, we know that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], so
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x \times 1 - \mathop {\lim }\limits_{x \to 0} 5x \times 1 + \mathop {\lim }\limits_{x \to 0} 3x \times 1 - \mathop {\lim }\limits_{x \to 0} x \times 1}}{{\mathop {\lim }\limits_{x \to 0} 6x \times 1 - \mathop {\lim }\limits_{x \to 0} 4x \times 1 + \mathop {\lim }\limits_{x \to 0} 2x \times 1}}\]
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x - \mathop {\lim }\limits_{x \to 0} 5x + \mathop {\lim }\limits_{x \to 0} 3x - \mathop {\lim }\limits_{x \to 0} x}}{{\mathop {\lim }\limits_{x \to 0} 6x - \mathop {\lim }\limits_{x \to 0} 4x + \mathop {\lim }\limits_{x \to 0} 2x}}\]
It can be written as
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} [7x - 5x + 3x - x]}}{{\mathop {\lim }\limits_{x \to 0} [6x - 4x + 2x]}}\]
Which further can be written as
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{7x - 5x + 3x - x}}{{6x - 4x + 2x}}\]
Solve the function,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{4x}}{{4x}}\]
Cancel \[4x\] from the numerator and denominator of the above function,
\[\mathop {\lim }\limits_{x \to 0} 1\]
Since the limit of a constant is constant itself, that is $\mathop {\lim }\limits_{x \to a} c = c$, where $c$is any constant,
\[\mathop {\lim }\limits_{x \to 0} 1 = 1\]
Hence, we get that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}} = 1$.
So, option (C) is the correct answer.
Note: The limit of a function at a point $t$ in its domain (if it exists) is the value that the function approaches as its argument approaches. If for a function $f(x)$, we have to find the limit at a point $t$, then it is written as $\mathop {\lim }\limits_{x \to t} f(x)$.
$\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}}$ where $\mathop {\lim }\limits_{x \to a} g(x) \ne 0$
$\mathop {\lim }\limits_{x \to a} [f(x) + g(x)] = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} g(x)$
$\mathop {\lim }\limits_{x \to a} [f(x).g(x)] = \mathop {\lim }\limits_{x \to a} f(x).\mathop {\lim }\limits_{x \to a} g(x)$
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
Complete step-by-step solution:
We are given a function $f(x) = \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}$ and we are required to evaluate the limit of the function at point $0$. That is, we need to find the value of
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}$
Since, the limit of the function $\dfrac{{\sin x}}{x}$ at point $0$ is equal to $1$. It can be written as $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$.
To solve the given question, we have to make every term of the from $\sin ax$ in the form $\dfrac{{\sin ax}}{{ax}}$, by multiplying and dividing $\sin ax$ by $ax$.
Write the given function again by multiplying and dividing $\sin ax$ by $ax$.
$\mathop {\lim }\limits_{x \to 0} \dfrac{{7x\dfrac{{\sin 7x}}{{7x}} - 5x\dfrac{{\sin 5x}}{{5x}} + 3x\dfrac{{\sin 3x}}{{3x}} - x\dfrac{{\sin x}}{x}}}{{6x\dfrac{{\sin 6x}}{{6x}} - 4x\dfrac{{\sin 4x}}{{4x}} + 2x\dfrac{{\sin 2x}}{{2x}}}}$
Now, use the Law of limit given by $\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}}$ where $\mathop {\lim }\limits_{x \to a} g(x) \ne 0$
$\dfrac{{\mathop {\lim }\limits_{x \to 0} \left[ {7x\dfrac{{\sin 7x}}{{7x}} - 5x\dfrac{{\sin 5x}}{{5x}} + 3x\dfrac{{\sin 3x}}{{3x}} - x\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} \left[ {6x\dfrac{{\sin 6x}}{{6x}} - 4x\dfrac{{\sin 4x}}{{4x}} + 2x\dfrac{{\sin 2x}}{{2x}}} \right]}}$
Now, use the Law of limit given by $\mathop {\lim }\limits_{x \to a} [f(x) + g(x)] = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} g(x)$
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} \left[ {7x\dfrac{{\sin 7x}}{{7x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {5x\dfrac{{\sin 5x}}{{5x}}} \right] + \mathop {\lim }\limits_{x \to 0} \left[ {3x\dfrac{{\sin 3x}}{{3x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {x\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} \left[ {6x\dfrac{{\sin 6x}}{{6x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {4x\dfrac{{\sin 4x}}{{4x}}} \right] + \mathop {\lim }\limits_{x \to 0} \left[ {2x\dfrac{{\sin 2x}}{{2x}}} \right]}}\]
Now, use the Law of limit given by $\mathop {\lim }\limits_{x \to a} [f(x).g(x)] = \mathop {\lim }\limits_{x \to a} f(x).\mathop {\lim }\limits_{x \to a} g(x)$ ,
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 7x}}{{7x}}} \right] - \mathop {\lim }\limits_{x \to 0} 5x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 5x}}{{5x}}} \right] + \mathop {\lim }\limits_{x \to 0} 3x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 3x}}{{3x}}} \right] - \mathop {\lim }\limits_{x \to 0} x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} 6x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 6x}}{{6x}}} \right] - \mathop {\lim }\limits_{x \to 0} 4x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 4x}}{{4x}}} \right] + \mathop {\lim }\limits_{x \to 0} 2x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 2x}}{{2x}}} \right]}}\]
Since, we know that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], so
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x \times 1 - \mathop {\lim }\limits_{x \to 0} 5x \times 1 + \mathop {\lim }\limits_{x \to 0} 3x \times 1 - \mathop {\lim }\limits_{x \to 0} x \times 1}}{{\mathop {\lim }\limits_{x \to 0} 6x \times 1 - \mathop {\lim }\limits_{x \to 0} 4x \times 1 + \mathop {\lim }\limits_{x \to 0} 2x \times 1}}\]
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x - \mathop {\lim }\limits_{x \to 0} 5x + \mathop {\lim }\limits_{x \to 0} 3x - \mathop {\lim }\limits_{x \to 0} x}}{{\mathop {\lim }\limits_{x \to 0} 6x - \mathop {\lim }\limits_{x \to 0} 4x + \mathop {\lim }\limits_{x \to 0} 2x}}\]
It can be written as
\[\dfrac{{\mathop {\lim }\limits_{x \to 0} [7x - 5x + 3x - x]}}{{\mathop {\lim }\limits_{x \to 0} [6x - 4x + 2x]}}\]
Which further can be written as
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{7x - 5x + 3x - x}}{{6x - 4x + 2x}}\]
Solve the function,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{4x}}{{4x}}\]
Cancel \[4x\] from the numerator and denominator of the above function,
\[\mathop {\lim }\limits_{x \to 0} 1\]
Since the limit of a constant is constant itself, that is $\mathop {\lim }\limits_{x \to a} c = c$, where $c$is any constant,
\[\mathop {\lim }\limits_{x \to 0} 1 = 1\]
Hence, we get that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}} = 1$.
So, option (C) is the correct answer.
Note: The limit of a function at a point $t$ in its domain (if it exists) is the value that the function approaches as its argument approaches. If for a function $f(x)$, we have to find the limit at a point $t$, then it is written as $\mathop {\lim }\limits_{x \to t} f(x)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

