
Evaluate the integral of $\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} = $
A) $\dfrac{{\text{x}}}{{\text{2}}}\left( {{\text{cos ln x + sin ln x}}} \right)$
B) \[\dfrac{{\text{x}}}{{\text{2}}}\left[ {{\text{cos ln x - sin ln x}}} \right]\]
C) $\left[ {{\text{x cos ln x + sin ln x}}} \right]$
D) None of these
Answer
564.3k+ views
Hint: In this question, we have to evaluate the question to find the value of the given integral term. For that, we are going to solve that given integral term by using integration and differentiation methods. There are no limit values in the given integral term. So we only have to evaluate the values of the integral term.
Formula used: ${\text{log x = }}\dfrac{{\text{1}}}{{\text{x}}}$ where ${\text{x}}$ is a constant.
$\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{uv = u }}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + v }}\dfrac{{{\text{du}}}}{{{\text{dx}}}}$
${\text{u dv = uv - }}\int {{\text{v du}}} $
Complete step-by-step answer:
Looking at $\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} $, we realize that it can’t be integrated straight away. So we will use substitution to solve this question.
We would need ${\text{cos}}\left( {{\text{ln x}}} \right)\dfrac{{\text{1}}}{{\text{x}}}$ to integrate by substitution.
Running out of ideas, let’s try putting in the “missing” $\dfrac{{\text{1}}}{{\text{x}}}$ and an ${\text{x}}$ to make up for it and try integrating by parts.
$\Rightarrow$$\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = }}\int {{\text{x cos}}\left( {{\text{ln x}}} \right)} {\text{. }}\dfrac{{\text{1}}}{{\text{x}}}{\text{dx}}} $---------(1)
Let ${\text{u = x}}$ and ${\text{dv = cos}}\left( {{\text{ln x}}} \right){\text{.}}\dfrac{{\text{1}}}{{\text{x}}}{\text{dx}}$
So, ${\text{du = dx}}$ and ${\text{v = sin}}\left( {{\text{ln x}}} \right)$
Substituting these values in (1), we get
$\Rightarrow$$\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right) - \int {\sin \left( {{\text{ln x}}} \right)} {\text{ dx}}} $
$\Rightarrow${\[\int {{\text{sin}}\left( {{\text{ln x}}} \right){\text{dx}}} \] Here are going to insert ${\text{x }}{\text{. }}\dfrac{{\text{1}}}{{\text{x}}}$}
$\Rightarrow$$\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right) - \int {{\text{x }}\sin \left( {{\text{ln x}}} \right){\text{ }}\dfrac{1}{{\text{x}}}} {\text{ dx}}} $
Now, we are going to integrate the term, we have
$\Rightarrow$$\int {{\text{x sin}}\left( {{\text{ln x}}} \right)\dfrac{{\text{1}}}{{\text{x}}}{\text{dx = }}\left[ {{\text{ - x cos}}\left( {{\text{ln x}}} \right){\text{ - }}\int {{\text{ - cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } \right]} $
So we now have,
$\Rightarrow$$\int {\cos \left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right){\text{ - }}\left[ {{\text{ - x cos}}\left( {{\text{ln x}}} \right){\text{ - }}\int {{\text{ - cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } \right]} $
Simplifying we get,
$\Rightarrow$$\int {\cos \left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right){\text{ + x cos}}\left( {{\text{ln x}}} \right) - \int {{\text{ cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } $
Now let us take ${\text{I = }}\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} $, then we have that
$\Rightarrow$\[{\text{I = x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right){\text{ - I }}\]
By adding ${\text{I}}$ then we have that,
$\Rightarrow$\[{\text{2I = x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right){\text{ }}\]
Rearranging the term for ${\text{I}}$,
$\Rightarrow$\[{\text{I = }}\dfrac{1}{2}\left[ {{\text{x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ }}\]
Now substitute the values of ${\text{I}}$, we get
$\Rightarrow$\[\int {\cos \left( {\ln {\text{x}}} \right)} {\text{ dx = }}\dfrac{1}{2}\left[ {{\text{x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ + c }}\]
Taking common \[{\text{x}}\] out from the brackets,
$\Rightarrow$\[\int {\cos \left( {\ln {\text{x}}} \right)} {\text{ dx = }}\dfrac{{\text{x}}}{2}\left[ {{\text{sin}}\left( {\ln {\text{x}}} \right) + {\text{cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ + c }}\]
Hence option A is the correct answer.
Note: We use definite integrals when the upper and lower limits of that function are given. We use indefinite integrals when no limits are given to a particular function. Integration is the inverse of differentiation.
Formula used: ${\text{log x = }}\dfrac{{\text{1}}}{{\text{x}}}$ where ${\text{x}}$ is a constant.
$\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{uv = u }}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + v }}\dfrac{{{\text{du}}}}{{{\text{dx}}}}$
${\text{u dv = uv - }}\int {{\text{v du}}} $
Complete step-by-step answer:
Looking at $\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} $, we realize that it can’t be integrated straight away. So we will use substitution to solve this question.
We would need ${\text{cos}}\left( {{\text{ln x}}} \right)\dfrac{{\text{1}}}{{\text{x}}}$ to integrate by substitution.
Running out of ideas, let’s try putting in the “missing” $\dfrac{{\text{1}}}{{\text{x}}}$ and an ${\text{x}}$ to make up for it and try integrating by parts.
$\Rightarrow$$\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = }}\int {{\text{x cos}}\left( {{\text{ln x}}} \right)} {\text{. }}\dfrac{{\text{1}}}{{\text{x}}}{\text{dx}}} $---------(1)
Let ${\text{u = x}}$ and ${\text{dv = cos}}\left( {{\text{ln x}}} \right){\text{.}}\dfrac{{\text{1}}}{{\text{x}}}{\text{dx}}$
So, ${\text{du = dx}}$ and ${\text{v = sin}}\left( {{\text{ln x}}} \right)$
Substituting these values in (1), we get
$\Rightarrow$$\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right) - \int {\sin \left( {{\text{ln x}}} \right)} {\text{ dx}}} $
$\Rightarrow${\[\int {{\text{sin}}\left( {{\text{ln x}}} \right){\text{dx}}} \] Here are going to insert ${\text{x }}{\text{. }}\dfrac{{\text{1}}}{{\text{x}}}$}
$\Rightarrow$$\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right) - \int {{\text{x }}\sin \left( {{\text{ln x}}} \right){\text{ }}\dfrac{1}{{\text{x}}}} {\text{ dx}}} $
Now, we are going to integrate the term, we have
$\Rightarrow$$\int {{\text{x sin}}\left( {{\text{ln x}}} \right)\dfrac{{\text{1}}}{{\text{x}}}{\text{dx = }}\left[ {{\text{ - x cos}}\left( {{\text{ln x}}} \right){\text{ - }}\int {{\text{ - cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } \right]} $
So we now have,
$\Rightarrow$$\int {\cos \left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right){\text{ - }}\left[ {{\text{ - x cos}}\left( {{\text{ln x}}} \right){\text{ - }}\int {{\text{ - cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } \right]} $
Simplifying we get,
$\Rightarrow$$\int {\cos \left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right){\text{ + x cos}}\left( {{\text{ln x}}} \right) - \int {{\text{ cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } $
Now let us take ${\text{I = }}\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} $, then we have that
$\Rightarrow$\[{\text{I = x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right){\text{ - I }}\]
By adding ${\text{I}}$ then we have that,
$\Rightarrow$\[{\text{2I = x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right){\text{ }}\]
Rearranging the term for ${\text{I}}$,
$\Rightarrow$\[{\text{I = }}\dfrac{1}{2}\left[ {{\text{x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ }}\]
Now substitute the values of ${\text{I}}$, we get
$\Rightarrow$\[\int {\cos \left( {\ln {\text{x}}} \right)} {\text{ dx = }}\dfrac{1}{2}\left[ {{\text{x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ + c }}\]
Taking common \[{\text{x}}\] out from the brackets,
$\Rightarrow$\[\int {\cos \left( {\ln {\text{x}}} \right)} {\text{ dx = }}\dfrac{{\text{x}}}{2}\left[ {{\text{sin}}\left( {\ln {\text{x}}} \right) + {\text{cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ + c }}\]
Hence option A is the correct answer.
Note: We use definite integrals when the upper and lower limits of that function are given. We use indefinite integrals when no limits are given to a particular function. Integration is the inverse of differentiation.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

