
Evaluate the integral of $\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}$.
Answer
459.6k+ views
Hint: The integral that we are given in the problem is $\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}$ . First, let us assume the expression $1-\sin x=t$ . Taking differentials on both sides of the equation, we get $-\cos x dx=dt$ . The integral thus becomes $\Rightarrow I=\int{\dfrac{-dt}{t\left( t+1 \right)}}$ . Using partial fraction technique, we get $\Rightarrow I=-\int{\left( \dfrac{1}{t}-\dfrac{1}{t+1} \right)}dt$ . Carrying out the integration, we get $\Rightarrow I=-\ln t+\ln \left( t+1 \right)$ . Upon substituting the value of t, we get the required result.
Complete step-by-step solution:
Let the integral be,
$I=\int{\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}dx}$
Now, let us assume the expression $1-\sin x=t$ . Taking differentials on both sides of the equation, we get,
$-\cos xdx=dt$
So, incorporating this in the integral, the integral thus becomes,
$\Rightarrow I=\int{\dfrac{-dt}{t\left( t+1 \right)}}$
Now, we take the help of partial fractions. For this, we need to break the expression $\dfrac{1}{t\left( t+1 \right)}$ into two or more simpler fractions. We do so by assuming,
$\dfrac{1}{t\left( t+1 \right)}=\dfrac{A}{t}+\dfrac{B}{t+1}$
Multiplying $t\left( t+1 \right)$ on both sides of the above equation, we get,
$\Rightarrow 1=A\left( t+1 \right)+Bt$
Simplifying the above equation, we get,
$\Rightarrow 1=A+\left( A+B \right)t$
Comparing the LHS and the RHS, we get,
$\begin{align}
& A=1,A+B=0 \\
& \Rightarrow A=1,B=-1 \\
\end{align}$
So, we can write the expression $\dfrac{1}{t\left( t+1 \right)}$ as $\dfrac{1}{t\left( t+1 \right)}=\dfrac{1}{t}-\dfrac{1}{t+1}$ . The above integral thus becomes,
$\Rightarrow I=-\int{\left( \dfrac{1}{t}-\dfrac{1}{t+1} \right)}dt$
Opening up the brackets, we get,
$\Rightarrow I=-\int{\dfrac{1}{t}}dt+\int{\dfrac{1}{t+1}dt}$
The above integral can be rewritten as,
$\Rightarrow I=-\int{\dfrac{1}{t}}dt+\int{\dfrac{d\left( t+1 \right)}{t+1}}$
Carrying out the integration, we get,
$\Rightarrow I=-\ln t+\ln \left( t+1 \right)$
Including the constant of integration as the integration is indefinite, we get,
$\Rightarrow I=-\ln t+\ln \left( t+1 \right)+c$
Upon substituting the value of t as $t=1-\sin x$ , we get,
$\Rightarrow I=-\ln \left( 1-\operatorname{sinx} \right)+\ln \left( 2-\sin x \right)+c$
Thus, we can conclude that the given integral $\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}$ upon integration gives $-\ln \left( 1-\operatorname{sinx} \right)+\ln \left( 2-\sin x \right)+c$ which is option B.
Note: The problem can be solved in another way. The integral is $I=\int{\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}dx}$ . We can rewrite the integral as,
$I=\int{\cos x\left( \dfrac{1}{\left( 1-\sin x \right)\left( 2-\sin x \right)} \right)dx}$
Now, using partial fractions, we get,
\[\begin{align}
& I=\int{\cos x\left( \dfrac{1}{\left( 1-\sin x \right)}-\dfrac{1}{\left( 2-\sin x \right)} \right)dx} \\
& \Rightarrow I=\int{\dfrac{\cos xdx}{\left( 1-\sin x \right)}}-\int{\dfrac{\cos xdx}{\left( 2-\sin x \right)}} \\
\end{align}\]
The integral can be modified as \[\Rightarrow I=-\int{\dfrac{d\left( 1-\sin x \right)}{\left( 1-\sin x \right)}}+\int{\dfrac{d\left( 2-\sin x \right)}{\left( 2-\sin x \right)}}\] . This gives, $\Rightarrow I=-\ln \left( 1-\operatorname{sinx} \right)+\ln \left( 2-\sin x \right)+c$ .
Complete step-by-step solution:
Let the integral be,
$I=\int{\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}dx}$
Now, let us assume the expression $1-\sin x=t$ . Taking differentials on both sides of the equation, we get,
$-\cos xdx=dt$
So, incorporating this in the integral, the integral thus becomes,
$\Rightarrow I=\int{\dfrac{-dt}{t\left( t+1 \right)}}$
Now, we take the help of partial fractions. For this, we need to break the expression $\dfrac{1}{t\left( t+1 \right)}$ into two or more simpler fractions. We do so by assuming,
$\dfrac{1}{t\left( t+1 \right)}=\dfrac{A}{t}+\dfrac{B}{t+1}$
Multiplying $t\left( t+1 \right)$ on both sides of the above equation, we get,
$\Rightarrow 1=A\left( t+1 \right)+Bt$
Simplifying the above equation, we get,
$\Rightarrow 1=A+\left( A+B \right)t$
Comparing the LHS and the RHS, we get,
$\begin{align}
& A=1,A+B=0 \\
& \Rightarrow A=1,B=-1 \\
\end{align}$
So, we can write the expression $\dfrac{1}{t\left( t+1 \right)}$ as $\dfrac{1}{t\left( t+1 \right)}=\dfrac{1}{t}-\dfrac{1}{t+1}$ . The above integral thus becomes,
$\Rightarrow I=-\int{\left( \dfrac{1}{t}-\dfrac{1}{t+1} \right)}dt$
Opening up the brackets, we get,
$\Rightarrow I=-\int{\dfrac{1}{t}}dt+\int{\dfrac{1}{t+1}dt}$
The above integral can be rewritten as,
$\Rightarrow I=-\int{\dfrac{1}{t}}dt+\int{\dfrac{d\left( t+1 \right)}{t+1}}$
Carrying out the integration, we get,
$\Rightarrow I=-\ln t+\ln \left( t+1 \right)$
Including the constant of integration as the integration is indefinite, we get,
$\Rightarrow I=-\ln t+\ln \left( t+1 \right)+c$
Upon substituting the value of t as $t=1-\sin x$ , we get,
$\Rightarrow I=-\ln \left( 1-\operatorname{sinx} \right)+\ln \left( 2-\sin x \right)+c$
Thus, we can conclude that the given integral $\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}$ upon integration gives $-\ln \left( 1-\operatorname{sinx} \right)+\ln \left( 2-\sin x \right)+c$ which is option B.
Note: The problem can be solved in another way. The integral is $I=\int{\dfrac{\cos x}{\left( 1-\sin x \right)\left( 2-\sin x \right)}dx}$ . We can rewrite the integral as,
$I=\int{\cos x\left( \dfrac{1}{\left( 1-\sin x \right)\left( 2-\sin x \right)} \right)dx}$
Now, using partial fractions, we get,
\[\begin{align}
& I=\int{\cos x\left( \dfrac{1}{\left( 1-\sin x \right)}-\dfrac{1}{\left( 2-\sin x \right)} \right)dx} \\
& \Rightarrow I=\int{\dfrac{\cos xdx}{\left( 1-\sin x \right)}}-\int{\dfrac{\cos xdx}{\left( 2-\sin x \right)}} \\
\end{align}\]
The integral can be modified as \[\Rightarrow I=-\int{\dfrac{d\left( 1-\sin x \right)}{\left( 1-\sin x \right)}}+\int{\dfrac{d\left( 2-\sin x \right)}{\left( 2-\sin x \right)}}\] . This gives, $\Rightarrow I=-\ln \left( 1-\operatorname{sinx} \right)+\ln \left( 2-\sin x \right)+c$ .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
