
How do you evaluate the integral $\int{x{{e}^{-{{x}^{2}}}}}dx$ from $-\infty $ to $\infty $ ?
Answer
552k+ views
Hint: We have to compute the value of an integral with indefinite limits that is, from $-\infty $ to $\infty $. Firstly, we will do certain required substitutions in order to simplify our function so that it can be integrated easily. However, since the upper and lower limits of this integral are infinity and negative infinity respectively, thus we will not directly substitute the limits rather we will take the help of summation using limits.
Complete step by step solution:
The function $x{{e}^{-{{x}^{2}}}}$is continuous from $-\infty $ to $\infty $.
Thus, we can break $\int{x{{e}^{-{{x}^{2}}}}}dx$ into two parts as:
$\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}}dx=\int\limits_{0}^{\infty }{x{{e}^{-{{x}^{2}}}}}dx+\int\limits_{-\infty }^{0}{x{{e}^{-{{x}^{2}}}}}dx$
Let $-{{x}^{2}}=t$
Differentiating both sides, we get
$-2x.dx=dt$
$\Rightarrow dx=-\dfrac{dt}{2x}$
Now we shall substitute the values of $-{{x}^{2}}$ and $dx$ respectively.
$\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=\int\limits_{-\infty }^{\infty }{x{{e}^{t}}}\left( -\dfrac{dt}{2x} \right)$
Cancelling x from the right-hand side, we get
$\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}}dx=-\dfrac{1}{2}\left( \int\limits_{0}^{\infty }{{{e}^{t}}dt}+\int\limits_{-\infty }^{0}{{{e}^{t}}}dt \right)$
We know that $\int{{{e}^{x}}.dx={{e}^{x}}+C}$, thus applying the value of this limit, we get
\[\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=-\dfrac{1}{2}\left( \left. \left( {{e}^{t}} \right) \right|_{0}^{\infty }+\left. \left( {{e}^{t}} \right) \right|_{-\infty }^{0} \right)\]
We will substitute the value of t back here now.
\[\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=-\dfrac{1}{2}\left( \left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }+\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0} \right)\]
Here, we will solve these two functions separately using limits.
For first function: \[-\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }\] ,
\[\begin{align}
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=-\dfrac{1}{2}\underset{a\to \infty }{\mathop{\lim }}\,\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{a} \\
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=-\dfrac{1}{2}\left[ \left( {{e}^{-{{a}^{2}}}} \right)-{{e}^{-{{0}^{2}}}} \right] \\
\end{align}\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=-\dfrac{1}{2}\left[ 0-\left( 1 \right) \right]\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=\dfrac{1}{2}\] ………………. (1)
For second function: \[-\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}\] ,
\[\begin{align}
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\underset{b\to -\infty }{\mathop{\lim }}\,\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{b}^{0} \\
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\left[ \left( {{e}^{-{{0}^{2}}}} \right)-{{e}^{-{{b}^{2}}}} \right] \\
\end{align}\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\left[ 1-\left( 0 \right) \right]\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\] ………………. (2)
Combining (1) and (2), we get
\[\begin{align}
& \Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=-\dfrac{1}{2}\left( \left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }+\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0} \right) \\
& \Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=\dfrac{1}{2}-\dfrac{1}{2} \\
& \Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=0 \\
\end{align}\]
Therefore, the value of the integral $\int{x{{e}^{-{{x}^{2}}}}}dx$ from $-\infty $ to $\infty $ is 0.
Note: While doing the calculations after applying the value of limit, one must be very careful about putting the correct values of limit as the terms on the right hand side get more complex. The possible mistake we could have made was that we could have forgotten to finally re-substitute the value of our assumed t-variable or we could have proceeded further to calculate the integral without using the limits.
Complete step by step solution:
The function $x{{e}^{-{{x}^{2}}}}$is continuous from $-\infty $ to $\infty $.
Thus, we can break $\int{x{{e}^{-{{x}^{2}}}}}dx$ into two parts as:
$\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}}dx=\int\limits_{0}^{\infty }{x{{e}^{-{{x}^{2}}}}}dx+\int\limits_{-\infty }^{0}{x{{e}^{-{{x}^{2}}}}}dx$
Let $-{{x}^{2}}=t$
Differentiating both sides, we get
$-2x.dx=dt$
$\Rightarrow dx=-\dfrac{dt}{2x}$
Now we shall substitute the values of $-{{x}^{2}}$ and $dx$ respectively.
$\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=\int\limits_{-\infty }^{\infty }{x{{e}^{t}}}\left( -\dfrac{dt}{2x} \right)$
Cancelling x from the right-hand side, we get
$\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}}dx=-\dfrac{1}{2}\left( \int\limits_{0}^{\infty }{{{e}^{t}}dt}+\int\limits_{-\infty }^{0}{{{e}^{t}}}dt \right)$
We know that $\int{{{e}^{x}}.dx={{e}^{x}}+C}$, thus applying the value of this limit, we get
\[\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=-\dfrac{1}{2}\left( \left. \left( {{e}^{t}} \right) \right|_{0}^{\infty }+\left. \left( {{e}^{t}} \right) \right|_{-\infty }^{0} \right)\]
We will substitute the value of t back here now.
\[\Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=-\dfrac{1}{2}\left( \left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }+\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0} \right)\]
Here, we will solve these two functions separately using limits.
For first function: \[-\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }\] ,
\[\begin{align}
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=-\dfrac{1}{2}\underset{a\to \infty }{\mathop{\lim }}\,\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{a} \\
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=-\dfrac{1}{2}\left[ \left( {{e}^{-{{a}^{2}}}} \right)-{{e}^{-{{0}^{2}}}} \right] \\
\end{align}\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=-\dfrac{1}{2}\left[ 0-\left( 1 \right) \right]\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }=\dfrac{1}{2}\] ………………. (1)
For second function: \[-\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}\] ,
\[\begin{align}
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\underset{b\to -\infty }{\mathop{\lim }}\,\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{b}^{0} \\
& \Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\left[ \left( {{e}^{-{{0}^{2}}}} \right)-{{e}^{-{{b}^{2}}}} \right] \\
\end{align}\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\left[ 1-\left( 0 \right) \right]\]
\[\Rightarrow -\dfrac{1}{2}\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0}=-\dfrac{1}{2}\] ………………. (2)
Combining (1) and (2), we get
\[\begin{align}
& \Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=-\dfrac{1}{2}\left( \left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{0}^{\infty }+\left. \left( {{e}^{-{{x}^{2}}}} \right) \right|_{-\infty }^{0} \right) \\
& \Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=\dfrac{1}{2}-\dfrac{1}{2} \\
& \Rightarrow \int\limits_{-\infty }^{\infty }{x{{e}^{-{{x}^{2}}}}.dx}=0 \\
\end{align}\]
Therefore, the value of the integral $\int{x{{e}^{-{{x}^{2}}}}}dx$ from $-\infty $ to $\infty $ is 0.
Note: While doing the calculations after applying the value of limit, one must be very careful about putting the correct values of limit as the terms on the right hand side get more complex. The possible mistake we could have made was that we could have forgotten to finally re-substitute the value of our assumed t-variable or we could have proceeded further to calculate the integral without using the limits.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

