
Evaluate the integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\].
Answer
575.7k+ views
Hint: In this question, in order to evaluate the definite integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\], we will first substitute the values \[\tan x=\dfrac{\sin x}{\cos x}\], \[\sec x=\dfrac{1}{\cos x}\] and \[\text{cosec}x=\dfrac{1}{\sin x}\] in the integrant of the given integral to simplify it into \[\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\]. Then we will use the property of the integral that \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\] in the integral \[\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\] and then will substituting the value \[2{{\sin }^{2}}x=1-\cos 2x\] in the simplified form of the integral. We will then evaluate the same in order to get the desired answer.
Complete step by step answer:
Let \[I\] denote the integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\].
That is, let \[I=\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\].
Now on substituting the values \[\tan x=\dfrac{\sin x}{\cos x}\], \[\sec x=\dfrac{1}{\cos x}\] and \[\text{cosec}x=\dfrac{1}{\sin x}\] in the integrant of the above integral we get
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{x\dfrac{\sin x}{\cos x}}{\dfrac{1}{\cos x}\cdot \dfrac{1}{\sin x}}dx} \\
& =\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}
\end{align}\]
Since we know the property \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\] of definite integral.
On comparing the integral \[\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\] with the general form \[\int\limits_{0}^{a}{f\left( x \right)dx}\] of definite integral, we will get
\[a=\pi \] and \[f\left( x \right)=x{{\sin }^{2}}x\].
Now using the above mention property, we will get
\[\begin{align}
& I=\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx} \\
& =\int\limits_{0}^{\pi }{\left( \pi -x \right){{\sin }^{2}}\left( \pi -x \right)dx}
\end{align}\]
Now on splitting the above integral using the identity that \[{{\sin }^{2}}\left( \pi -x \right)={{\sin }^{2}}x\]we get,
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\left( \pi -x \right){{\sin }^{2}}\left( \pi -x \right)dx} \\
& =\int\limits_{0}^{\pi }{\left( \pi -x \right){{\sin }^{2}}xdx} \\
& =\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}-\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}
\end{align}\]
Now since we have \[I=\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\], we have
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}-\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx} \\
& =\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}-I
\end{align}\]
Taking \[I\] common in one side, we side
\[2I=\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}\]
We will further simplify the above integral into
\[2I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{2{{\sin }^{2}}xdx}\]
Since we have \[2{{\sin }^{2}}x=1-\cos 2x\], we get
\[2I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{2\left( 1-\cos 2x \right)dx}\]
Now we will spit the above integral.
On solving using the values \[\sin n\pi =0\,\,\,\,\,\forall n\in Z\], we will have
\[\begin{align}
& 2I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{2dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\cos 2xdx} \\
& =\dfrac{\pi }{2}\left[ x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \dfrac{\sin 2x}{2} \right]_{0}^{\pi } \\
& =\dfrac{\pi }{2}\left( \pi -0 \right)-\dfrac{\pi }{4}\left( \sin 2\pi -\sin 0 \right) \\
& =\dfrac{{{\pi }^{2}}}{2}-0 \\
& =\dfrac{{{\pi }^{2}}}{2}
\end{align}\]
Now we will divide the equation by 2 both sides, we get
\[I=\dfrac{{{\pi }^{2}}}{4}\]
Therefore have that the integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}=\dfrac{{{\pi }^{2}}}{4}\].
Note:
In this problem, we can also evaluate the integral \[I=\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\] by first substituting the value \[2{{\sin }^{2}}x=1-\cos 2x\] in the integrant to get \[I=\int\limits_{0}^{\pi }{x\left( \dfrac{1-\cos 2x}{2} \right)dx}\]and then we can split the integral into two parts . Further we can evaluate the same integral by using integration by parts to get the desired result.
Complete step by step answer:
Let \[I\] denote the integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\].
That is, let \[I=\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\].
Now on substituting the values \[\tan x=\dfrac{\sin x}{\cos x}\], \[\sec x=\dfrac{1}{\cos x}\] and \[\text{cosec}x=\dfrac{1}{\sin x}\] in the integrant of the above integral we get
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{x\dfrac{\sin x}{\cos x}}{\dfrac{1}{\cos x}\cdot \dfrac{1}{\sin x}}dx} \\
& =\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}
\end{align}\]
Since we know the property \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\] of definite integral.
On comparing the integral \[\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\] with the general form \[\int\limits_{0}^{a}{f\left( x \right)dx}\] of definite integral, we will get
\[a=\pi \] and \[f\left( x \right)=x{{\sin }^{2}}x\].
Now using the above mention property, we will get
\[\begin{align}
& I=\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx} \\
& =\int\limits_{0}^{\pi }{\left( \pi -x \right){{\sin }^{2}}\left( \pi -x \right)dx}
\end{align}\]
Now on splitting the above integral using the identity that \[{{\sin }^{2}}\left( \pi -x \right)={{\sin }^{2}}x\]we get,
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\left( \pi -x \right){{\sin }^{2}}\left( \pi -x \right)dx} \\
& =\int\limits_{0}^{\pi }{\left( \pi -x \right){{\sin }^{2}}xdx} \\
& =\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}-\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}
\end{align}\]
Now since we have \[I=\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\], we have
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}-\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx} \\
& =\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}-I
\end{align}\]
Taking \[I\] common in one side, we side
\[2I=\int\limits_{0}^{\pi }{\pi {{\sin }^{2}}xdx}\]
We will further simplify the above integral into
\[2I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{2{{\sin }^{2}}xdx}\]
Since we have \[2{{\sin }^{2}}x=1-\cos 2x\], we get
\[2I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{2\left( 1-\cos 2x \right)dx}\]
Now we will spit the above integral.
On solving using the values \[\sin n\pi =0\,\,\,\,\,\forall n\in Z\], we will have
\[\begin{align}
& 2I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{2dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\cos 2xdx} \\
& =\dfrac{\pi }{2}\left[ x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \dfrac{\sin 2x}{2} \right]_{0}^{\pi } \\
& =\dfrac{\pi }{2}\left( \pi -0 \right)-\dfrac{\pi }{4}\left( \sin 2\pi -\sin 0 \right) \\
& =\dfrac{{{\pi }^{2}}}{2}-0 \\
& =\dfrac{{{\pi }^{2}}}{2}
\end{align}\]
Now we will divide the equation by 2 both sides, we get
\[I=\dfrac{{{\pi }^{2}}}{4}\]
Therefore have that the integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}=\dfrac{{{\pi }^{2}}}{4}\].
Note:
In this problem, we can also evaluate the integral \[I=\int\limits_{0}^{\pi }{x{{\sin }^{2}}xdx}\] by first substituting the value \[2{{\sin }^{2}}x=1-\cos 2x\] in the integrant to get \[I=\int\limits_{0}^{\pi }{x\left( \dfrac{1-\cos 2x}{2} \right)dx}\]and then we can split the integral into two parts . Further we can evaluate the same integral by using integration by parts to get the desired result.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

