
Evaluate the integral $\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}.$.
Answer
586.2k+ views
Hint: In this we will evaluate the integral $\text{ }\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}\text{ }$ by using method of partial fractions. In the method of partial fraction the function which is to be integrated should be rational function or rational algebraic function. We first represent rational function in partial form then by integral we can evaluate. Now we will give one of the general conversion of rational form into partial form which as follows:
$\dfrac{px+q}{\left( x-a \right)\left( x-b \right)}=\dfrac{A}{x-a}+\dfrac{B}{x-b}$
Complete step by step answer:
Let $I=\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}$
Since ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
${{x}^{2}}-{{1}^{2}}=\left( x-1 \right)\left( x+1 \right)$
$\Rightarrow I=\int{\dfrac{\left( x-1 \right)\left( x+1 \right)}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}$
By cancelling (x-1) by both numerator and denominator, we get
$\Rightarrow I=\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}\text{ }....\text{(1)}$
Now consider, $\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}=\dfrac{A}{x-1}+\dfrac{B}{x+3}\text{ }...\text{(2)}$
By cross multiplication, we get
$\left( x+1 \right)=A\left( x+3 \right)+B\left( x-1 \right)\text{ }...\text{(3)}$
Put x=-3 in equation (3), we get
$\left( -3+1 \right)=A\left( -3+3 \right)+B\left( -3-1 \right)$
$-2=A\left( 0 \right)+B\left( -4 \right)\text{ }$
$B\left( -4 \right)\text{= }\left( -2 \right)$
Dividing both sides by -4, we get
$B=\dfrac{1}{2}$.
Put x=1 in equation (3), we get
$\left( 1+1 \right)=A\left( 1+3 \right)+B\left( 1-1 \right)\text{ }$
$2=A\left( 4 \right)+B\left( 0 \right)\text{ }$
$A\left( 4 \right)\text{=2 }$
Dividing both sides by 4, we get
$A\text{=}\dfrac{1}{2}\text{ }$
By using values of A and B in equation (2), we get
$\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}=\dfrac{\dfrac{1}{2}}{x-1}+\dfrac{\dfrac{1}{2}}{x+3}\text{ }$
Taking $\dfrac{1}{2}$ common form right hand side, we get
\[\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}\text{=}\dfrac{1}{2}\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }...\text{(4)}\]
By integrating equation (4) with respect to x,
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\int{\dfrac{1}{2}\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }dx}$
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\int{\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }dx}$
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\left( \int{\dfrac{1}{x-1}\text{ }dx}+\int{\dfrac{1}{x+3}\text{ }dx} \right)\text{ }...(5)$
Since $\int{\dfrac{1}{x+a}\text{ }dx=\log (x+a)}+c\text{ }$
$\Rightarrow \int{\dfrac{1}{x-1}\text{ }dx}=\log (x-1)+c\text{ }...\text{(6) and}$
$\int{\dfrac{1}{x+3}\text{ }dx}=\log (x+3)+c\text{ }...\text{(7)}$
By using equation (6) and equation (7) in equation (5),
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\left( \log (x-1)+\log (x+3) \right)+c$
Since \[\log a+ \log b=log(ab)\]
Hence,
$\text{ }\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\text{log}\left( (x-1)(x+3) \right)\text{+c }$
Note:
In this problem, one should know all the formula of integration, the rational function and if $f(x)\text{ and }g(x)$ are two polynomial then $\dfrac{f(x)}{\text{ }g(x)},$ $g(x)\ne 0$ is called rational function.
$\dfrac{px+q}{\left( x-a \right)\left( x-b \right)}=\dfrac{A}{x-a}+\dfrac{B}{x-b}$
Complete step by step answer:
Let $I=\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}$
Since ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
${{x}^{2}}-{{1}^{2}}=\left( x-1 \right)\left( x+1 \right)$
$\Rightarrow I=\int{\dfrac{\left( x-1 \right)\left( x+1 \right)}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}$
By cancelling (x-1) by both numerator and denominator, we get
$\Rightarrow I=\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}\text{ }....\text{(1)}$
Now consider, $\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}=\dfrac{A}{x-1}+\dfrac{B}{x+3}\text{ }...\text{(2)}$
By cross multiplication, we get
$\left( x+1 \right)=A\left( x+3 \right)+B\left( x-1 \right)\text{ }...\text{(3)}$
Put x=-3 in equation (3), we get
$\left( -3+1 \right)=A\left( -3+3 \right)+B\left( -3-1 \right)$
$-2=A\left( 0 \right)+B\left( -4 \right)\text{ }$
$B\left( -4 \right)\text{= }\left( -2 \right)$
Dividing both sides by -4, we get
$B=\dfrac{1}{2}$.
Put x=1 in equation (3), we get
$\left( 1+1 \right)=A\left( 1+3 \right)+B\left( 1-1 \right)\text{ }$
$2=A\left( 4 \right)+B\left( 0 \right)\text{ }$
$A\left( 4 \right)\text{=2 }$
Dividing both sides by 4, we get
$A\text{=}\dfrac{1}{2}\text{ }$
By using values of A and B in equation (2), we get
$\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}=\dfrac{\dfrac{1}{2}}{x-1}+\dfrac{\dfrac{1}{2}}{x+3}\text{ }$
Taking $\dfrac{1}{2}$ common form right hand side, we get
\[\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}\text{=}\dfrac{1}{2}\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }...\text{(4)}\]
By integrating equation (4) with respect to x,
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\int{\dfrac{1}{2}\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }dx}$
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\int{\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }dx}$
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\left( \int{\dfrac{1}{x-1}\text{ }dx}+\int{\dfrac{1}{x+3}\text{ }dx} \right)\text{ }...(5)$
Since $\int{\dfrac{1}{x+a}\text{ }dx=\log (x+a)}+c\text{ }$
$\Rightarrow \int{\dfrac{1}{x-1}\text{ }dx}=\log (x-1)+c\text{ }...\text{(6) and}$
$\int{\dfrac{1}{x+3}\text{ }dx}=\log (x+3)+c\text{ }...\text{(7)}$
By using equation (6) and equation (7) in equation (5),
$\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\left( \log (x-1)+\log (x+3) \right)+c$
Since \[\log a+ \log b=log(ab)\]
Hence,
$\text{ }\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\text{log}\left( (x-1)(x+3) \right)\text{+c }$
Note:
In this problem, one should know all the formula of integration, the rational function and if $f(x)\text{ and }g(x)$ are two polynomial then $\dfrac{f(x)}{\text{ }g(x)},$ $g(x)\ne 0$ is called rational function.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

