
Evaluate the integral \[\int{\cos \left( {{\log }_{e}}x \right)dx}\] where \[c\] is the constant of integration.
(a) \[\dfrac{x}{2}\left( \cos \left( {{\log }_{e}}x \right)-\sin \left( {{\log }_{e}}x \right) \right)+c\]
(b) \[\dfrac{x}{2}\left( \cos \left( {{\log }_{e}}x \right)+\sin \left( {{\log }_{e}}x \right) \right)+c\]
(c) \[x\left( \cos \left( {{\log }_{e}}x \right)+\sin \left( {{\log }_{e}}x \right) \right)+c\]
(d) \[x\left( \cos \left( {{\log }_{e}}x \right)-\sin \left( {{\log }_{e}}x \right) \right)+c\]
Answer
575.7k+ views
Hint: In this question, in order to evaluate the definite integral \[\int{\cos \left( {{\log }_{e}}x \right)dx}\], we will first substitute the value \[{{\log }_{e}}x=t\] which implies that \[x={{e}^{t}}\] and then differentiate \[x={{e}^{t}}\] to get \[dx={{e}^{t}}dt\]. We will then substitute both \[{{\log }_{e}}x=t\] and \[dx={{e}^{t}}dt\] in the above integral to simplify it into \[\int{{{e}^{t}}\cos tdt}\]. Then we will use integration by parts in the integral \[\int{{{e}^{t}}\cos tdt}\]. We will then evaluate the same in order to get the desired answer.
Complete step by step answer:
Let \[I\] denote the integral \[\int{\cos \left( {{\log }_{e}}x \right)dx}\].
That is, let \[I=\int{\cos \left( {{\log }_{e}}x \right)dx}\].
Now on substituting the value \[{{\log }_{e}}x=t\] in the integrant of the above integral.
That is we have \[x={{e}^{t}}\]
On differentiating \[x={{e}^{t}}\], we will get
\[dx={{e}^{t}}dt\]
We will now substitute both the values \[{{\log }_{e}}x=t\] and \[dx={{e}^{t}}dt\] in the above integral \[I=\int{\cos \left( {{\log }_{e}}x \right)dx}\] to get
\[\begin{align}
& I=\int{\cos \left( {{\log }_{e}}x \right)dx} \\
& =\int{{{e}^{t}}\cos tdt}
\end{align}\]
Since we know that by integration by parts we have \[\int{ab=a\int{b-\int{{{a}^{'}}\int{b}}}}\]
by taking the first function and the second function usinf the rule of ILATE where
I stands for Integration of the function,
L stands for the logarithmic function,
A stands for algebraic expression,
T stands for trigonometric function and
E stands for exponential function.
Now using formula of integration by parts on both side of the above integral, we get
\[\begin{align}
& I=\int{{{e}^{t}}\cos tdt} \\
& =\cos t\int{{{e}^{t}}dt-\int{\dfrac{d}{dt}\left( \cos t \right)\int{{{e}^{t}}dt}dt}}................(1)
\end{align}\]
Now since we have \[\dfrac{d}{dt}\left( \cos t \right)=\sin t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] where \[c\] is the constant of integration.
Substituting the values \[\dfrac{d}{dt}\left( \cos t \right)=\sin t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] in equation (1), we will get
\[\begin{align}
& I=\cos t\int{{{e}^{t}}dt-\int{\dfrac{d}{dt}\left( \cos t \right)\int{{{e}^{t}}dt}dt}} \\
& ={{e}^{t}}\cos t+\int{{{e}^{t}}\sin tdt}+c.......(2)
\end{align}\]
Let us suppose that \[J\] denotes the integral \[\int{{{e}^{t}}\sin tdt}\].
That is, let \[J=\int{{{e}^{t}}\sin tdt}\].
Now using formula of integration by parts on both side of the above integral, we get
\[\begin{align}
& I=\int{{{e}^{t}}\sin tdt} \\
& =\sin t\int{{{e}^{t}}dt-\int{\dfrac{d}{dt}\left( \sin t \right)\int{{{e}^{t}}dt}dt}}................(3)
\end{align}\]
Now since we have \[\dfrac{d}{dt}\left( \sin t \right)=\cos t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] where \[c\] is the constant of integration.
Substituting the values \[\dfrac{d}{dt}\left( \sin t \right)=\cos t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] in equation (3), we will get
\[J={{e}^{t}}\sin t-\int{{{e}^{t}}\cos dt}+c........(4)\]
Thus on substituting integral \[I=\int{{{e}^{t}}\cos tdt}\] in equation (4), we have
\[J={{e}^{t}}\sin t-I+c\]
Now using \[J={{e}^{t}}\sin t-I+c\] in equation (2), we get
\[\begin{align}
& I={{e}^{t}}\cos t+\int{{{e}^{t}}\sin tdt}+c \\
& ={{e}^{t}}\cos t+{{e}^{t}}\sin t-I+c
\end{align}\]
Now we will take the integral \[I\] on one side,
\[2I={{e}^{t}}\cos t+{{e}^{t}}\sin t+c\]
On dividing the above equation by 2, we have
\[I=\dfrac{1}{2}{{e}^{t}}\cos t+\dfrac{1}{2}{{e}^{t}}\sin t+c\]
Now on substituting the value \[{{\log }_{e}}x=t\] in the above equation, we get
\[I=\dfrac{1}{2}{{e}^{{{\log }_{e}}x}}\cos \left( {{\log }_{e}}x \right)+\dfrac{1}{2}{{e}^{{{\log }_{e}}x}}\sin \left( {{\log }_{e}}x \right)+c\]
Since we know that \[{{e}^{{{\log }_{e}}x}}=x\], thus we have
\[I=\dfrac{1}{2}x\cos \left( {{\log }_{e}}x \right)+\dfrac{1}{2}x\sin \left( {{\log }_{e}}x \right)+c\]
Therefore we have
\[\begin{align}
& \int{\cos \left( {{\log }_{e}}x \right)dx}=\dfrac{x}{2}\cos \left( {{\log }_{e}}x \right)+\dfrac{x}{2}\sin \left( {{\log }_{e}}x \right)+c \\
& =\dfrac{x}{2}\left( \cos \left( {{\log }_{e}}x \right)+\sin \left( {{\log }_{e}}x \right) \right)+c
\end{align}\].
So, the correct answer is “Option B”.
Note: In this problem, we are evaluate the integral \[I=\int{\cos \left( {{\log }_{e}}x \right)dx}\] by substituting the value \[{{\log }_{e}}x=t\] in the integrant and then we are using integration by parts twice in the whole solution. Further do not forget to substitute the value \[{{\log }_{e}}x=t\] in the end to get the desired answer.
Complete step by step answer:
Let \[I\] denote the integral \[\int{\cos \left( {{\log }_{e}}x \right)dx}\].
That is, let \[I=\int{\cos \left( {{\log }_{e}}x \right)dx}\].
Now on substituting the value \[{{\log }_{e}}x=t\] in the integrant of the above integral.
That is we have \[x={{e}^{t}}\]
On differentiating \[x={{e}^{t}}\], we will get
\[dx={{e}^{t}}dt\]
We will now substitute both the values \[{{\log }_{e}}x=t\] and \[dx={{e}^{t}}dt\] in the above integral \[I=\int{\cos \left( {{\log }_{e}}x \right)dx}\] to get
\[\begin{align}
& I=\int{\cos \left( {{\log }_{e}}x \right)dx} \\
& =\int{{{e}^{t}}\cos tdt}
\end{align}\]
Since we know that by integration by parts we have \[\int{ab=a\int{b-\int{{{a}^{'}}\int{b}}}}\]
by taking the first function and the second function usinf the rule of ILATE where
I stands for Integration of the function,
L stands for the logarithmic function,
A stands for algebraic expression,
T stands for trigonometric function and
E stands for exponential function.
Now using formula of integration by parts on both side of the above integral, we get
\[\begin{align}
& I=\int{{{e}^{t}}\cos tdt} \\
& =\cos t\int{{{e}^{t}}dt-\int{\dfrac{d}{dt}\left( \cos t \right)\int{{{e}^{t}}dt}dt}}................(1)
\end{align}\]
Now since we have \[\dfrac{d}{dt}\left( \cos t \right)=\sin t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] where \[c\] is the constant of integration.
Substituting the values \[\dfrac{d}{dt}\left( \cos t \right)=\sin t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] in equation (1), we will get
\[\begin{align}
& I=\cos t\int{{{e}^{t}}dt-\int{\dfrac{d}{dt}\left( \cos t \right)\int{{{e}^{t}}dt}dt}} \\
& ={{e}^{t}}\cos t+\int{{{e}^{t}}\sin tdt}+c.......(2)
\end{align}\]
Let us suppose that \[J\] denotes the integral \[\int{{{e}^{t}}\sin tdt}\].
That is, let \[J=\int{{{e}^{t}}\sin tdt}\].
Now using formula of integration by parts on both side of the above integral, we get
\[\begin{align}
& I=\int{{{e}^{t}}\sin tdt} \\
& =\sin t\int{{{e}^{t}}dt-\int{\dfrac{d}{dt}\left( \sin t \right)\int{{{e}^{t}}dt}dt}}................(3)
\end{align}\]
Now since we have \[\dfrac{d}{dt}\left( \sin t \right)=\cos t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] where \[c\] is the constant of integration.
Substituting the values \[\dfrac{d}{dt}\left( \sin t \right)=\cos t\] and \[\int{{{e}^{t}}dt}={{e}^{t}}+c\] in equation (3), we will get
\[J={{e}^{t}}\sin t-\int{{{e}^{t}}\cos dt}+c........(4)\]
Thus on substituting integral \[I=\int{{{e}^{t}}\cos tdt}\] in equation (4), we have
\[J={{e}^{t}}\sin t-I+c\]
Now using \[J={{e}^{t}}\sin t-I+c\] in equation (2), we get
\[\begin{align}
& I={{e}^{t}}\cos t+\int{{{e}^{t}}\sin tdt}+c \\
& ={{e}^{t}}\cos t+{{e}^{t}}\sin t-I+c
\end{align}\]
Now we will take the integral \[I\] on one side,
\[2I={{e}^{t}}\cos t+{{e}^{t}}\sin t+c\]
On dividing the above equation by 2, we have
\[I=\dfrac{1}{2}{{e}^{t}}\cos t+\dfrac{1}{2}{{e}^{t}}\sin t+c\]
Now on substituting the value \[{{\log }_{e}}x=t\] in the above equation, we get
\[I=\dfrac{1}{2}{{e}^{{{\log }_{e}}x}}\cos \left( {{\log }_{e}}x \right)+\dfrac{1}{2}{{e}^{{{\log }_{e}}x}}\sin \left( {{\log }_{e}}x \right)+c\]
Since we know that \[{{e}^{{{\log }_{e}}x}}=x\], thus we have
\[I=\dfrac{1}{2}x\cos \left( {{\log }_{e}}x \right)+\dfrac{1}{2}x\sin \left( {{\log }_{e}}x \right)+c\]
Therefore we have
\[\begin{align}
& \int{\cos \left( {{\log }_{e}}x \right)dx}=\dfrac{x}{2}\cos \left( {{\log }_{e}}x \right)+\dfrac{x}{2}\sin \left( {{\log }_{e}}x \right)+c \\
& =\dfrac{x}{2}\left( \cos \left( {{\log }_{e}}x \right)+\sin \left( {{\log }_{e}}x \right) \right)+c
\end{align}\].
So, the correct answer is “Option B”.
Note: In this problem, we are evaluate the integral \[I=\int{\cos \left( {{\log }_{e}}x \right)dx}\] by substituting the value \[{{\log }_{e}}x=t\] in the integrant and then we are using integration by parts twice in the whole solution. Further do not forget to substitute the value \[{{\log }_{e}}x=t\] in the end to get the desired answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

