
How do you evaluate the integral $\int {\dfrac{{dx}}{{{x^4} - 16}}} $?
Answer
544.2k+ views
Hint: We will first use the identity of ${a^2} - {b^2}$ and then use the method of partial fraction to find it in easier terms, which we can integrate easily and get the answer.
Complete step-by-step answer:
We are given that we are required to find the value of $\int {\dfrac{{dx}}{{{x^4} - 16}}} $.
It has the denominator of \[{x^4} - 16\].
Using the fact that: ${a^2} - {b^2} = (a - b)(a + b)$, we will get \[{x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)\]
Now, using the same identity further, we will get the following expression:-
\[ \Rightarrow {x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)\]
Now, we can write:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)}}\]
Using the partial fraction, we can write it as:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{A}{{x + 2}} + \dfrac{B}{{x - 2}} + \dfrac{{Cx + D}}{{{x^2} + 4}}\] ………………….(A)
Simplifying it, we will get the following expression:-
\[ \Rightarrow 1 = A(x - 2)({x^2} + 4) + B(x + 2)({x^2} + 4) + \left( {Cx + D} \right)(x - 2)(x + 2)\]
Simplifying the right hand side, by opening the brackets, we will get:-
\[ \Rightarrow 1 = A\left( {{x^3} - 2{x^2} + 4x - 8} \right) + B\left( {{x^3} + 2{x^2} + 4x + 8} \right) + \left( {Cx + D} \right)\left( {{x^2} - 4} \right)\]
Combining the coefficients of x raised to the power 3, 2, 1 and 0 together to get the following expression:-
\[ \Rightarrow 1 = \left( {A + B + C} \right){x^3} + \left( { - 2A + 2B + D} \right){x^2} + \left( {4A + 4B - 4C} \right)x + \left( { - 8A + 8B - 4D} \right)\]
Comparing both the sides in the above equation, we will then obtain the following equation:-
\[ \Rightarrow A + B + C = 0\] …………(1)
\[ \Rightarrow - 2A + 2B + D = 0\] …………(2)
\[ \Rightarrow 4A + 4B - 4C = 0\] …………(3)
\[ \Rightarrow - 8A + 8B - 4D = 1\] …………(4)
Solving the equation numbers from (1) to (4), we will get:-
\[ \Rightarrow A = - \dfrac{1}{{32}},B = \dfrac{1}{{32}},C = 0\] and \[D = - \dfrac{1}{8}\]
Putting these values in the equation (A), we will get:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\]
Now, taking integration on both sides, we have:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
We know that $\int {\dfrac{{dx}}{{x + a}} = \ln |x + a| + C} $. So, we will get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
Now, we also know that \[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]. So, we get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\]
Hence, the answer is \[ - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\].
Note:
The students must note that in the solution, when we got \[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \] from \[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\], we did not directly get it.
But, we used the fact that: $\int {(f + g + h)(x)dx = \int {f(x)dx} } + \int {g(x)dx} + \int {h(x)dx} $, where we took: $f(x) = \dfrac{1}{{x + 2}},g(x) = \dfrac{1}{{x - 2}}$ and $h(x) = \dfrac{1}{{{x^2} + 4}}$ and thus, we have the result stated above.
The students must commit to the memory the following formulas:-
${a^2} - {b^2} = (a - b)(a + b)$
\[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]
The students must know that, in partial fraction, we basically rewrite the function in such a manner that it becomes easier and simpler for us to find the integration of those functions using simpler formulas.
Complete step-by-step answer:
We are given that we are required to find the value of $\int {\dfrac{{dx}}{{{x^4} - 16}}} $.
It has the denominator of \[{x^4} - 16\].
Using the fact that: ${a^2} - {b^2} = (a - b)(a + b)$, we will get \[{x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)\]
Now, using the same identity further, we will get the following expression:-
\[ \Rightarrow {x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)\]
Now, we can write:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)}}\]
Using the partial fraction, we can write it as:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{A}{{x + 2}} + \dfrac{B}{{x - 2}} + \dfrac{{Cx + D}}{{{x^2} + 4}}\] ………………….(A)
Simplifying it, we will get the following expression:-
\[ \Rightarrow 1 = A(x - 2)({x^2} + 4) + B(x + 2)({x^2} + 4) + \left( {Cx + D} \right)(x - 2)(x + 2)\]
Simplifying the right hand side, by opening the brackets, we will get:-
\[ \Rightarrow 1 = A\left( {{x^3} - 2{x^2} + 4x - 8} \right) + B\left( {{x^3} + 2{x^2} + 4x + 8} \right) + \left( {Cx + D} \right)\left( {{x^2} - 4} \right)\]
Combining the coefficients of x raised to the power 3, 2, 1 and 0 together to get the following expression:-
\[ \Rightarrow 1 = \left( {A + B + C} \right){x^3} + \left( { - 2A + 2B + D} \right){x^2} + \left( {4A + 4B - 4C} \right)x + \left( { - 8A + 8B - 4D} \right)\]
Comparing both the sides in the above equation, we will then obtain the following equation:-
\[ \Rightarrow A + B + C = 0\] …………(1)
\[ \Rightarrow - 2A + 2B + D = 0\] …………(2)
\[ \Rightarrow 4A + 4B - 4C = 0\] …………(3)
\[ \Rightarrow - 8A + 8B - 4D = 1\] …………(4)
Solving the equation numbers from (1) to (4), we will get:-
\[ \Rightarrow A = - \dfrac{1}{{32}},B = \dfrac{1}{{32}},C = 0\] and \[D = - \dfrac{1}{8}\]
Putting these values in the equation (A), we will get:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\]
Now, taking integration on both sides, we have:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
We know that $\int {\dfrac{{dx}}{{x + a}} = \ln |x + a| + C} $. So, we will get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
Now, we also know that \[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]. So, we get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\]
Hence, the answer is \[ - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\].
Note:
The students must note that in the solution, when we got \[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \] from \[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\], we did not directly get it.
But, we used the fact that: $\int {(f + g + h)(x)dx = \int {f(x)dx} } + \int {g(x)dx} + \int {h(x)dx} $, where we took: $f(x) = \dfrac{1}{{x + 2}},g(x) = \dfrac{1}{{x - 2}}$ and $h(x) = \dfrac{1}{{{x^2} + 4}}$ and thus, we have the result stated above.
The students must commit to the memory the following formulas:-
${a^2} - {b^2} = (a - b)(a + b)$
\[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]
The students must know that, in partial fraction, we basically rewrite the function in such a manner that it becomes easier and simpler for us to find the integration of those functions using simpler formulas.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

