
How do you evaluate the integral $\int {\dfrac{{dx}}{{{x^4} - 16}}} $?
Answer
558k+ views
Hint: We will first use the identity of ${a^2} - {b^2}$ and then use the method of partial fraction to find it in easier terms, which we can integrate easily and get the answer.
Complete step-by-step answer:
We are given that we are required to find the value of $\int {\dfrac{{dx}}{{{x^4} - 16}}} $.
It has the denominator of \[{x^4} - 16\].
Using the fact that: ${a^2} - {b^2} = (a - b)(a + b)$, we will get \[{x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)\]
Now, using the same identity further, we will get the following expression:-
\[ \Rightarrow {x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)\]
Now, we can write:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)}}\]
Using the partial fraction, we can write it as:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{A}{{x + 2}} + \dfrac{B}{{x - 2}} + \dfrac{{Cx + D}}{{{x^2} + 4}}\] ………………….(A)
Simplifying it, we will get the following expression:-
\[ \Rightarrow 1 = A(x - 2)({x^2} + 4) + B(x + 2)({x^2} + 4) + \left( {Cx + D} \right)(x - 2)(x + 2)\]
Simplifying the right hand side, by opening the brackets, we will get:-
\[ \Rightarrow 1 = A\left( {{x^3} - 2{x^2} + 4x - 8} \right) + B\left( {{x^3} + 2{x^2} + 4x + 8} \right) + \left( {Cx + D} \right)\left( {{x^2} - 4} \right)\]
Combining the coefficients of x raised to the power 3, 2, 1 and 0 together to get the following expression:-
\[ \Rightarrow 1 = \left( {A + B + C} \right){x^3} + \left( { - 2A + 2B + D} \right){x^2} + \left( {4A + 4B - 4C} \right)x + \left( { - 8A + 8B - 4D} \right)\]
Comparing both the sides in the above equation, we will then obtain the following equation:-
\[ \Rightarrow A + B + C = 0\] …………(1)
\[ \Rightarrow - 2A + 2B + D = 0\] …………(2)
\[ \Rightarrow 4A + 4B - 4C = 0\] …………(3)
\[ \Rightarrow - 8A + 8B - 4D = 1\] …………(4)
Solving the equation numbers from (1) to (4), we will get:-
\[ \Rightarrow A = - \dfrac{1}{{32}},B = \dfrac{1}{{32}},C = 0\] and \[D = - \dfrac{1}{8}\]
Putting these values in the equation (A), we will get:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\]
Now, taking integration on both sides, we have:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
We know that $\int {\dfrac{{dx}}{{x + a}} = \ln |x + a| + C} $. So, we will get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
Now, we also know that \[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]. So, we get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\]
Hence, the answer is \[ - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\].
Note:
The students must note that in the solution, when we got \[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \] from \[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\], we did not directly get it.
But, we used the fact that: $\int {(f + g + h)(x)dx = \int {f(x)dx} } + \int {g(x)dx} + \int {h(x)dx} $, where we took: $f(x) = \dfrac{1}{{x + 2}},g(x) = \dfrac{1}{{x - 2}}$ and $h(x) = \dfrac{1}{{{x^2} + 4}}$ and thus, we have the result stated above.
The students must commit to the memory the following formulas:-
${a^2} - {b^2} = (a - b)(a + b)$
\[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]
The students must know that, in partial fraction, we basically rewrite the function in such a manner that it becomes easier and simpler for us to find the integration of those functions using simpler formulas.
Complete step-by-step answer:
We are given that we are required to find the value of $\int {\dfrac{{dx}}{{{x^4} - 16}}} $.
It has the denominator of \[{x^4} - 16\].
Using the fact that: ${a^2} - {b^2} = (a - b)(a + b)$, we will get \[{x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)\]
Now, using the same identity further, we will get the following expression:-
\[ \Rightarrow {x^4} - 16 = \left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)\]
Now, we can write:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)}}\]
Using the partial fraction, we can write it as:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = \dfrac{A}{{x + 2}} + \dfrac{B}{{x - 2}} + \dfrac{{Cx + D}}{{{x^2} + 4}}\] ………………….(A)
Simplifying it, we will get the following expression:-
\[ \Rightarrow 1 = A(x - 2)({x^2} + 4) + B(x + 2)({x^2} + 4) + \left( {Cx + D} \right)(x - 2)(x + 2)\]
Simplifying the right hand side, by opening the brackets, we will get:-
\[ \Rightarrow 1 = A\left( {{x^3} - 2{x^2} + 4x - 8} \right) + B\left( {{x^3} + 2{x^2} + 4x + 8} \right) + \left( {Cx + D} \right)\left( {{x^2} - 4} \right)\]
Combining the coefficients of x raised to the power 3, 2, 1 and 0 together to get the following expression:-
\[ \Rightarrow 1 = \left( {A + B + C} \right){x^3} + \left( { - 2A + 2B + D} \right){x^2} + \left( {4A + 4B - 4C} \right)x + \left( { - 8A + 8B - 4D} \right)\]
Comparing both the sides in the above equation, we will then obtain the following equation:-
\[ \Rightarrow A + B + C = 0\] …………(1)
\[ \Rightarrow - 2A + 2B + D = 0\] …………(2)
\[ \Rightarrow 4A + 4B - 4C = 0\] …………(3)
\[ \Rightarrow - 8A + 8B - 4D = 1\] …………(4)
Solving the equation numbers from (1) to (4), we will get:-
\[ \Rightarrow A = - \dfrac{1}{{32}},B = \dfrac{1}{{32}},C = 0\] and \[D = - \dfrac{1}{8}\]
Putting these values in the equation (A), we will get:-
\[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\]
Now, taking integration on both sides, we have:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
We know that $\int {\dfrac{{dx}}{{x + a}} = \ln |x + a| + C} $. So, we will get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \]
Now, we also know that \[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]. So, we get:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\]
Hence, the answer is \[ - \dfrac{1}{{32}}\ln |x + 2| + \dfrac{1}{{32}}\ln |x - 2| - \dfrac{1}{8}{\tan ^{ - 1}}\dfrac{x}{2} + C\].
Note:
The students must note that in the solution, when we got \[ \Rightarrow \int {\dfrac{{dx}}{{{x^4} - 16}}} = - \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x + 2}}} + \dfrac{1}{{32}}\int {\dfrac{{dx}}{{x - 2}}} - \dfrac{1}{8}\int {\dfrac{{dx}}{{\left( {{x^2} + 4} \right)}}} \] from \[ \Rightarrow \dfrac{1}{{{x^4} - 16}} = - \dfrac{1}{{32\left( {x + 2} \right)}} + \dfrac{1}{{32\left( {x - 2} \right)}} - \dfrac{1}{{8\left( {{x^2} + 4} \right)}}\], we did not directly get it.
But, we used the fact that: $\int {(f + g + h)(x)dx = \int {f(x)dx} } + \int {g(x)dx} + \int {h(x)dx} $, where we took: $f(x) = \dfrac{1}{{x + 2}},g(x) = \dfrac{1}{{x - 2}}$ and $h(x) = \dfrac{1}{{{x^2} + 4}}$ and thus, we have the result stated above.
The students must commit to the memory the following formulas:-
${a^2} - {b^2} = (a - b)(a + b)$
\[\int {\dfrac{{dx}}{{\left( {{x^2} + {a^2}} \right)}} = {{\tan }^{ - 1}}\dfrac{x}{a} + C} \]
The students must know that, in partial fraction, we basically rewrite the function in such a manner that it becomes easier and simpler for us to find the integration of those functions using simpler formulas.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

