
How do you evaluate the integral $\int {\dfrac{1}{{{x^3} - x}}dx} $?
Answer
543k+ views
Hint: This question will be solved by using the partial fraction method. To apply this method, we have to convert the denominator into its simplest form. Then decompose the integrand and simplify it. After that, take different values of x and find A, B, and C. Substitute the decomposition into the integral. Then apply the formula as stated below.
$\int {\dfrac{1}{x}dx = \ln \left| x \right|} $
Complete step-by-step answer:
Let us use a partial fraction method to solve this question.
$ \Rightarrow \int {\dfrac{1}{{{x^3} - x}}dx} $
Now, take out a common factor x from the denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {{x^2} - 1} \right)}}dx} $
As we already know the algebraic formula$\left( {{x^2} - 1} \right) = \left( {x - 1} \right)\left( {x + 1} \right)$.
Let us substitute that formula at the denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}dx} $
Let us decompose the integrand.
$ \Rightarrow \dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{A}{x} + \dfrac{B}{{x - 1}} + \dfrac{C}{{x + 1}}$
Here, we will do the lowest common denominator of all the terms.
$ \Rightarrow \dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{A\left( {x - 1} \right)\left( {x + 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} + \dfrac{{B\left( x \right)\left( {x + 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} + \dfrac{{C\left( x \right)\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}$
Now, we can remove all terms which have an equal denominator.
$ \Rightarrow 1 = A\left( {x - 1} \right)\left( {x + 1} \right) + B\left( x \right)\left( {x + 1} \right) + C\left( x \right)\left( {x - 1} \right)$ ...(1)
Let us find the values of A, B, and C.
For that, we will take different values of x.
Let us take $x = 0$ in equation (1).
$ \Rightarrow 1 = A\left( {0 - 1} \right)\left( {0 + 1} \right) + B\left( 0 \right)\left( {0 + 1} \right) + C\left( 0 \right)\left( {0 - 1} \right)$
Therefore,
$ \Rightarrow 1 = A\left( { - 1} \right)\left( 1 \right)$
Finally,
$ \Rightarrow A = - 1$
Let us take $x = 1$ in equation (1).
$ \Rightarrow 1 = A\left( {1 - 1} \right)\left( {1 + 1} \right) + B\left( 1 \right)\left( {1 + 1} \right) + C\left( 1 \right)\left( {1 - 1} \right)$
Therefore,
$ \Rightarrow 1 = B\left( 1 \right)\left( 2 \right)$
$ \Rightarrow 1 = 2B$
Now, we will divide both sides by 2.
Finally,
$ \Rightarrow B = \dfrac{1}{2}$
Let us take $x = - 1$ in equation (1).
$ \Rightarrow 1 = A\left( { - 1 - 1} \right)\left( { - 1 + 1} \right) + B\left( { - 1} \right)\left( { - 1 + 1} \right) + C\left( { - 1} \right)\left( { - 1 - 1} \right)$
Therefore,
$ \Rightarrow 1 = C\left( { - 1} \right)\left( { - 2} \right)$
$ \Rightarrow 1 = 2C$
Now, we will divide both sides by 2.
Finally,
$ \Rightarrow C = \dfrac{1}{2}$
Let us put the decomposition into the integral.
$ \Rightarrow \int {\left( {\dfrac{{ - 1}}{x} + \dfrac{{\dfrac{1}{2}}}{{x - 1}} + \dfrac{{\dfrac{1}{2}}}{{x + 1}}} \right)dx} $
Now, apply integration to each term.
$ \Rightarrow \int {\dfrac{{ - 1}}{x}dx} + \int {\dfrac{{\dfrac{1}{2}}}{{x - 1}}dx + } \int {\dfrac{{\dfrac{1}{2}}}{{x + 1}}dx} $
Take out constant terms from the integral.
$ \Rightarrow \left( { - 1} \right)\int {\dfrac{1}{x}dx} + \dfrac{1}{2}\int {\dfrac{1}{{x - 1}}dx + } \dfrac{1}{2}\int {\dfrac{1}{{x + 1}}dx} $
Now, we will apply the integral formula as stated below:
$\int {\dfrac{1}{x}dx = \ln \left| x \right|} $
So, we get the answer as below.
$ \Rightarrow - \ln \left| x \right| + \dfrac{1}{2}\ln \left| {x - 1} \right| + \dfrac{1}{2}\ln \left| {x + 1} \right| + C$
Note:
In a partial fraction, the numerator must be of at least one degree less than the denominator. The denominator must contain linear factors, repeated linear factors, or a quadratic factor.
We decompose the fractions into partial fractions because:
> It makes certain integrals much easier to do.
> It is used in the Laplace transform.
$\int {\dfrac{1}{x}dx = \ln \left| x \right|} $
Complete step-by-step answer:
Let us use a partial fraction method to solve this question.
$ \Rightarrow \int {\dfrac{1}{{{x^3} - x}}dx} $
Now, take out a common factor x from the denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {{x^2} - 1} \right)}}dx} $
As we already know the algebraic formula$\left( {{x^2} - 1} \right) = \left( {x - 1} \right)\left( {x + 1} \right)$.
Let us substitute that formula at the denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}dx} $
Let us decompose the integrand.
$ \Rightarrow \dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{A}{x} + \dfrac{B}{{x - 1}} + \dfrac{C}{{x + 1}}$
Here, we will do the lowest common denominator of all the terms.
$ \Rightarrow \dfrac{1}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{A\left( {x - 1} \right)\left( {x + 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} + \dfrac{{B\left( x \right)\left( {x + 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}} + \dfrac{{C\left( x \right)\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {x + 1} \right)}}$
Now, we can remove all terms which have an equal denominator.
$ \Rightarrow 1 = A\left( {x - 1} \right)\left( {x + 1} \right) + B\left( x \right)\left( {x + 1} \right) + C\left( x \right)\left( {x - 1} \right)$ ...(1)
Let us find the values of A, B, and C.
For that, we will take different values of x.
Let us take $x = 0$ in equation (1).
$ \Rightarrow 1 = A\left( {0 - 1} \right)\left( {0 + 1} \right) + B\left( 0 \right)\left( {0 + 1} \right) + C\left( 0 \right)\left( {0 - 1} \right)$
Therefore,
$ \Rightarrow 1 = A\left( { - 1} \right)\left( 1 \right)$
Finally,
$ \Rightarrow A = - 1$
Let us take $x = 1$ in equation (1).
$ \Rightarrow 1 = A\left( {1 - 1} \right)\left( {1 + 1} \right) + B\left( 1 \right)\left( {1 + 1} \right) + C\left( 1 \right)\left( {1 - 1} \right)$
Therefore,
$ \Rightarrow 1 = B\left( 1 \right)\left( 2 \right)$
$ \Rightarrow 1 = 2B$
Now, we will divide both sides by 2.
Finally,
$ \Rightarrow B = \dfrac{1}{2}$
Let us take $x = - 1$ in equation (1).
$ \Rightarrow 1 = A\left( { - 1 - 1} \right)\left( { - 1 + 1} \right) + B\left( { - 1} \right)\left( { - 1 + 1} \right) + C\left( { - 1} \right)\left( { - 1 - 1} \right)$
Therefore,
$ \Rightarrow 1 = C\left( { - 1} \right)\left( { - 2} \right)$
$ \Rightarrow 1 = 2C$
Now, we will divide both sides by 2.
Finally,
$ \Rightarrow C = \dfrac{1}{2}$
Let us put the decomposition into the integral.
$ \Rightarrow \int {\left( {\dfrac{{ - 1}}{x} + \dfrac{{\dfrac{1}{2}}}{{x - 1}} + \dfrac{{\dfrac{1}{2}}}{{x + 1}}} \right)dx} $
Now, apply integration to each term.
$ \Rightarrow \int {\dfrac{{ - 1}}{x}dx} + \int {\dfrac{{\dfrac{1}{2}}}{{x - 1}}dx + } \int {\dfrac{{\dfrac{1}{2}}}{{x + 1}}dx} $
Take out constant terms from the integral.
$ \Rightarrow \left( { - 1} \right)\int {\dfrac{1}{x}dx} + \dfrac{1}{2}\int {\dfrac{1}{{x - 1}}dx + } \dfrac{1}{2}\int {\dfrac{1}{{x + 1}}dx} $
Now, we will apply the integral formula as stated below:
$\int {\dfrac{1}{x}dx = \ln \left| x \right|} $
So, we get the answer as below.
$ \Rightarrow - \ln \left| x \right| + \dfrac{1}{2}\ln \left| {x - 1} \right| + \dfrac{1}{2}\ln \left| {x + 1} \right| + C$
Note:
In a partial fraction, the numerator must be of at least one degree less than the denominator. The denominator must contain linear factors, repeated linear factors, or a quadratic factor.
We decompose the fractions into partial fractions because:
> It makes certain integrals much easier to do.
> It is used in the Laplace transform.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

