
Evaluate the given trigonometric integral \[\int{\tan x\tan 2x\tan 3xdx}\].
Answer
615.6k+ views
Hint: Write $\tan 3x=\tan \left( x+2x \right)$and use the formula $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$to get $\tan 3x$in terms of $\tan x\ and\ \tan 2x$.
Complete step-by-step solution -
We know $\int{\tan x=\log \left| \sec x \right|}$.
Use this and compute further.
We have to find \[\int{\tan x\tan 2x\tan 3xdx}\].
Let us assume \[I=\int{\tan x\tan 2x\tan 3xdx}\].
We can write $\tan \left( 3x \right)=\tan \left( x+2x \right)$.
We know, $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
$\begin{align}
& \Rightarrow \tan 3x=\tan \left( x+2x \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \Rightarrow \tan 3x=\dfrac{\tan x+\tan 2x}{1-\tan x\tan 2x} \\
\end{align}$
On multiplying both sides by $\left( 1-\tan x\tan 2x \right)$, we will get;
$\begin{align}
& \Rightarrow \tan 3x\left( 1-\tan x\tan 2x \right)=\dfrac{\left( \tan x+\tan 2x \right)}{\left( 1-\tan x\tan 2x \right)}\times \left( 1-\tan x\tan 2x \right) \\
& \Rightarrow \tan 3x\left( 1-\tan x\tan 2x \right)=\tan x+\tan 2x \\
& \Rightarrow \tan 3x-\tan x\tan 2x\tan 3x=\tan x+\tan 2x \\
\end{align}$
Taking $\tan 3x$ to RHS, we will get;
$\Rightarrow -\tan x\tan 2x\tan 3x=\tan x+\tan 2x-\tan 3x$
Multiplying both sides of equation by (-1), we will get;
$\tan x\tan 2x\tan 3x=\tan 3x-\tan x-\tan 2x$
On putting this value of $\tan x\tan 2x\tan 3x$ in I, we will get,
$I=\int{\left( \tan 3x-\tan x-\tan 2x \right)}dx$
We know,
\[\begin{align}
& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx=\int{f\left( x \right)dx+\int{g\left( x \right)dx+\int{h\left( x \right)dx}}}} \\
& \Rightarrow I=\int{\tan 3xdx-}\int{\tan xdx-}\int{\tan 2xdx} \\
\end{align}\]
We know,
\[\begin{align}
& \int{\tan \left( ax \right)dx=\dfrac{1}{a}}\log \left| \sec \left( ax \right) \right|+C \\
& \Rightarrow I=\dfrac{1}{3}\log \left| \sec 3x \right|-1.\log \left| \sec x \right|-\dfrac{1}{2}\left| \sec 2x \right|+C \\
\end{align}\]
Where ‘C’ is a constant of integration.
Note: This is an indefinite integral, so don’t forget to add a constant of integration at last and also don’t forget to take the modulus of $\sec \left( ax \right)$ as the log of a number is defined only when the number is positive.
Complete step-by-step solution -
We know $\int{\tan x=\log \left| \sec x \right|}$.
Use this and compute further.
We have to find \[\int{\tan x\tan 2x\tan 3xdx}\].
Let us assume \[I=\int{\tan x\tan 2x\tan 3xdx}\].
We can write $\tan \left( 3x \right)=\tan \left( x+2x \right)$.
We know, $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
$\begin{align}
& \Rightarrow \tan 3x=\tan \left( x+2x \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\
& \Rightarrow \tan 3x=\dfrac{\tan x+\tan 2x}{1-\tan x\tan 2x} \\
\end{align}$
On multiplying both sides by $\left( 1-\tan x\tan 2x \right)$, we will get;
$\begin{align}
& \Rightarrow \tan 3x\left( 1-\tan x\tan 2x \right)=\dfrac{\left( \tan x+\tan 2x \right)}{\left( 1-\tan x\tan 2x \right)}\times \left( 1-\tan x\tan 2x \right) \\
& \Rightarrow \tan 3x\left( 1-\tan x\tan 2x \right)=\tan x+\tan 2x \\
& \Rightarrow \tan 3x-\tan x\tan 2x\tan 3x=\tan x+\tan 2x \\
\end{align}$
Taking $\tan 3x$ to RHS, we will get;
$\Rightarrow -\tan x\tan 2x\tan 3x=\tan x+\tan 2x-\tan 3x$
Multiplying both sides of equation by (-1), we will get;
$\tan x\tan 2x\tan 3x=\tan 3x-\tan x-\tan 2x$
On putting this value of $\tan x\tan 2x\tan 3x$ in I, we will get,
$I=\int{\left( \tan 3x-\tan x-\tan 2x \right)}dx$
We know,
\[\begin{align}
& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx=\int{f\left( x \right)dx+\int{g\left( x \right)dx+\int{h\left( x \right)dx}}}} \\
& \Rightarrow I=\int{\tan 3xdx-}\int{\tan xdx-}\int{\tan 2xdx} \\
\end{align}\]
We know,
\[\begin{align}
& \int{\tan \left( ax \right)dx=\dfrac{1}{a}}\log \left| \sec \left( ax \right) \right|+C \\
& \Rightarrow I=\dfrac{1}{3}\log \left| \sec 3x \right|-1.\log \left| \sec x \right|-\dfrac{1}{2}\left| \sec 2x \right|+C \\
\end{align}\]
Where ‘C’ is a constant of integration.
Note: This is an indefinite integral, so don’t forget to add a constant of integration at last and also don’t forget to take the modulus of $\sec \left( ax \right)$ as the log of a number is defined only when the number is positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

