
Evaluate the given trigonometric expression: $\cos {{25}^{\circ }}-\cos {{65}^{\circ }}=$.
\[\begin{align}
& A.\sqrt{2}\cos {{20}^{\circ }} \\
& B.\sqrt{2}\sin {{20}^{\circ }} \\
& C.\sqrt{3}\cos {{20}^{\circ }} \\
& D.\sqrt{3}\sin {{20}^{\circ }} \\
\end{align}\]
Answer
571.2k+ views
Hint: In this question, we need to find the value of a function given in cosine angle. Since function is given in the form of $\cos C- \cos D$, so we will use the formula of subtraction of two cosine function given by: $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$. This will give us a function in the form of the multiplication of two sine functions. We will put the value of one of the sine functions known from the trigonometric ratio table and find our final answer.
Complete step-by-step solution
Here we are given the expression as $\cos {{25}^{\circ }}-\cos {{65}^{\circ }}$.
As we can see, the given expression is in the form of subtraction of two cosine function, so we can use the formula of subtraction of two cosine function given by: $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$.
Here let us take $C={{25}^{\circ }}\text{ and }D={{65}^{\circ }}$ so by formula we get:
$\cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{25}^{\circ }}+{{65}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{25}^{\circ }}}{2} \right)$
${{25}^{\circ }}+{{65}^{\circ }}$ becomes equal to ${{90}^{\circ }}$ and dividing it by 2 gives us ${{45}^{\circ }}$. ${{65}^{\circ }}-{{25}^{\circ }}$ becomes equal to ${{40}^{\circ }}$ and dividing it by 2 gives us ${{20}^{\circ }}$. So we get:
$\begin{align}
& \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{90}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin {{45}^{\circ }}\sin {{20}^{\circ }} \\
\end{align}$
As we can see, none of our options match with the current answer, so let us try to simplify it now.
We know, in the trigonometric ratio table, we have values of angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$. So we can have a value of $\sin {{45}^{\circ }}$.
We know value of $\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}$ so we get:
$\Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\times \dfrac{1}{\sqrt{2}}\times \sin {{20}^{\circ }}$.
Since 2 can be written as \[\sqrt{2}\times \sqrt{2}\] so we get:
\[\begin{align}
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}\times \sin {{20}^{\circ }} \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\sqrt{2}\sin {{20}^{\circ }} \\
\end{align}\]
Hence option B is the correct answer.
Note: Students should note that, in the formula, angle of sine is $\left( \dfrac{D-C}{2} \right)$ changing position of C and D will give us change in answer because $\sin \left( -\theta \right)=-\sin \theta $. Take care of signs while applying formulas of addition or subtraction of two cosine or two sine functions. Keep in mind all the values from the trigonometric ratio table.
Complete step-by-step solution
Here we are given the expression as $\cos {{25}^{\circ }}-\cos {{65}^{\circ }}$.
As we can see, the given expression is in the form of subtraction of two cosine function, so we can use the formula of subtraction of two cosine function given by: $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$.
Here let us take $C={{25}^{\circ }}\text{ and }D={{65}^{\circ }}$ so by formula we get:
$\cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{25}^{\circ }}+{{65}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{25}^{\circ }}}{2} \right)$
${{25}^{\circ }}+{{65}^{\circ }}$ becomes equal to ${{90}^{\circ }}$ and dividing it by 2 gives us ${{45}^{\circ }}$. ${{65}^{\circ }}-{{25}^{\circ }}$ becomes equal to ${{40}^{\circ }}$ and dividing it by 2 gives us ${{20}^{\circ }}$. So we get:
$\begin{align}
& \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{90}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin {{45}^{\circ }}\sin {{20}^{\circ }} \\
\end{align}$
As we can see, none of our options match with the current answer, so let us try to simplify it now.
We know, in the trigonometric ratio table, we have values of angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$. So we can have a value of $\sin {{45}^{\circ }}$.
We know value of $\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}$ so we get:
$\Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\times \dfrac{1}{\sqrt{2}}\times \sin {{20}^{\circ }}$.
Since 2 can be written as \[\sqrt{2}\times \sqrt{2}\] so we get:
\[\begin{align}
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}\times \sin {{20}^{\circ }} \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\sqrt{2}\sin {{20}^{\circ }} \\
\end{align}\]
Hence option B is the correct answer.
Note: Students should note that, in the formula, angle of sine is $\left( \dfrac{D-C}{2} \right)$ changing position of C and D will give us change in answer because $\sin \left( -\theta \right)=-\sin \theta $. Take care of signs while applying formulas of addition or subtraction of two cosine or two sine functions. Keep in mind all the values from the trigonometric ratio table.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

