
Evaluate the given trigonometric expression: $\cos {{25}^{\circ }}-\cos {{65}^{\circ }}=$.
\[\begin{align}
& A.\sqrt{2}\cos {{20}^{\circ }} \\
& B.\sqrt{2}\sin {{20}^{\circ }} \\
& C.\sqrt{3}\cos {{20}^{\circ }} \\
& D.\sqrt{3}\sin {{20}^{\circ }} \\
\end{align}\]
Answer
484.8k+ views
Hint: In this question, we need to find the value of a function given in cosine angle. Since function is given in the form of $\cos C- \cos D$, so we will use the formula of subtraction of two cosine function given by: $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$. This will give us a function in the form of the multiplication of two sine functions. We will put the value of one of the sine functions known from the trigonometric ratio table and find our final answer.
Complete step-by-step solution
Here we are given the expression as $\cos {{25}^{\circ }}-\cos {{65}^{\circ }}$.
As we can see, the given expression is in the form of subtraction of two cosine function, so we can use the formula of subtraction of two cosine function given by: $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$.
Here let us take $C={{25}^{\circ }}\text{ and }D={{65}^{\circ }}$ so by formula we get:
$\cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{25}^{\circ }}+{{65}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{25}^{\circ }}}{2} \right)$
${{25}^{\circ }}+{{65}^{\circ }}$ becomes equal to ${{90}^{\circ }}$ and dividing it by 2 gives us ${{45}^{\circ }}$. ${{65}^{\circ }}-{{25}^{\circ }}$ becomes equal to ${{40}^{\circ }}$ and dividing it by 2 gives us ${{20}^{\circ }}$. So we get:
$\begin{align}
& \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{90}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin {{45}^{\circ }}\sin {{20}^{\circ }} \\
\end{align}$
As we can see, none of our options match with the current answer, so let us try to simplify it now.
We know, in the trigonometric ratio table, we have values of angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$. So we can have a value of $\sin {{45}^{\circ }}$.
We know value of $\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}$ so we get:
$\Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\times \dfrac{1}{\sqrt{2}}\times \sin {{20}^{\circ }}$.
Since 2 can be written as \[\sqrt{2}\times \sqrt{2}\] so we get:
\[\begin{align}
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}\times \sin {{20}^{\circ }} \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\sqrt{2}\sin {{20}^{\circ }} \\
\end{align}\]
Hence option B is the correct answer.
Note: Students should note that, in the formula, angle of sine is $\left( \dfrac{D-C}{2} \right)$ changing position of C and D will give us change in answer because $\sin \left( -\theta \right)=-\sin \theta $. Take care of signs while applying formulas of addition or subtraction of two cosine or two sine functions. Keep in mind all the values from the trigonometric ratio table.
Complete step-by-step solution
Here we are given the expression as $\cos {{25}^{\circ }}-\cos {{65}^{\circ }}$.
As we can see, the given expression is in the form of subtraction of two cosine function, so we can use the formula of subtraction of two cosine function given by: $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$.
Here let us take $C={{25}^{\circ }}\text{ and }D={{65}^{\circ }}$ so by formula we get:
$\cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{25}^{\circ }}+{{65}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{25}^{\circ }}}{2} \right)$
${{25}^{\circ }}+{{65}^{\circ }}$ becomes equal to ${{90}^{\circ }}$ and dividing it by 2 gives us ${{45}^{\circ }}$. ${{65}^{\circ }}-{{25}^{\circ }}$ becomes equal to ${{40}^{\circ }}$ and dividing it by 2 gives us ${{20}^{\circ }}$. So we get:
$\begin{align}
& \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin \left( \dfrac{{{90}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}}{2} \right) \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\sin {{45}^{\circ }}\sin {{20}^{\circ }} \\
\end{align}$
As we can see, none of our options match with the current answer, so let us try to simplify it now.
We know, in the trigonometric ratio table, we have values of angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$. So we can have a value of $\sin {{45}^{\circ }}$.
We know value of $\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}$ so we get:
$\Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=2\times \dfrac{1}{\sqrt{2}}\times \sin {{20}^{\circ }}$.
Since 2 can be written as \[\sqrt{2}\times \sqrt{2}\] so we get:
\[\begin{align}
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}\times \sin {{20}^{\circ }} \\
& \Rightarrow \cos {{25}^{\circ }}-\cos {{65}^{\circ }}=\sqrt{2}\sin {{20}^{\circ }} \\
\end{align}\]
Hence option B is the correct answer.
Note: Students should note that, in the formula, angle of sine is $\left( \dfrac{D-C}{2} \right)$ changing position of C and D will give us change in answer because $\sin \left( -\theta \right)=-\sin \theta $. Take care of signs while applying formulas of addition or subtraction of two cosine or two sine functions. Keep in mind all the values from the trigonometric ratio table.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
