
Evaluate the given limit - \[\int\limits_{a}^{b}{\ s gn xdx}=\](where \[a,b\in R\])
A. \[\left| b \right|-\left| a \right|\]
B. \[\left( b-a \right)\ s gn \left( b-a \right)\]
C. \[b\ s gn b-a\ s gn a\]
D. \[\left| a \right|-\left| b \right|\]
Answer
600.9k+ views
Hint: Divide the question in the number of cases related to a and b with respect to signs of them. Then generalize the solution at last.
Complete step-by-step answer:
Here, we have given expression/function as –
\[\int\limits_{a}^{b}{\ s gn xdx}=?\]
As we can define \[\ s gn x\]function as follows:
\[\ s gn x=\left\{ \begin{matrix}
\dfrac{|x|}{x},x\ne 0 \\
0,x=0 \\
\end{matrix} \right.\]
Or
\[\ s gn x=\left\{ \begin{matrix}
1,x>0 \\
-1,x<0 \\
0,x=0 \\
\end{matrix} \right.\]
Representation on graph –
Case1: \[a\ge 0,b\ge 0\] \[a,b\in R\]
\[\int\limits_{a}^{b}{\ s gn x dx=\int\limits_{a}^{b}{1dx=b-a}}\]
As we can see from the graph or defined function that is a, b both are greater than 0 then \[\ s gn x=1\].
Case: 2 \[a\le 0,b\le 0\]
\[\int\limits_{a}^{b}{\ s gn (x)dx=\int\limits_{a}^{b}{-1dx=-(b-a)=a-b}}\]
Similarly, if \[a\le 0\And b\le 0\]then, \[\ s gn (x)=-1\].
Case: 3 \[a\ge 0,b\le 0\]
\[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{\ s gn (x)dx}}\]
We have a property of integration as
\[\int\limits_{a}^{b}{f(x)dx=-\int\limits_{b}^{a}{f(x)dx}}\]
Hence, \[\int\limits_{a}^{b}{\ s gn (x)dx=-\int\limits_{b}^{a}{\ s gn (x)dx}=-\left[ \int\limits_{b}^{0}{\ s gn (x)dx}+\int\limits_{0}^{a}{\ s gn (x)dx} \right]}\]
Property used: - \[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{c}{f(x)dx}+\int\limits_{c}^{b}{f(x)dx}\] if \[aTherefore, expression will become - \[-\int\limits_{b}^{0}{\ s gn xdx}-\int\limits_{0}^{a}{\ s gn xdx}\]
As b is negative, so from b to 0 \[\ s gn (x)=-1\]and a is positive hence, \[\ s gn x=1\].
\[-\int\limits_{b}^{a}{(-1)dx}-\int\limits_{0}^{a}{1dx}=-b-a\]
Case: 4 \[a\le 0,b\ge 0\]
Similarly, by using integrating properties explained in case 3 we can proceed here as well: -
\[\begin{align}
& \int\limits_{a}^{b}{\ s gn xdx}=\int\limits_{a}^{0}{\ s gn xdx}+\int\limits_{0}^{b}{\ s gn xdx} \\
& =\int\limits_{a}^{0}{-1dx}+\int\limits_{0}^{b}{+1dx} \\
& \Rightarrow a+b \\
\end{align}\]
Here, \[\int\limits_{a}^{b}{\ s gn xdx}=\left\{ \begin{matrix}
b-a,a\ge 0,b\ge 0 \\
a-b,a\le 0,b\le 0 \\
-b-a,a\ge 0,b\le 0 \\
a+b,a\le 0,b\ge 0 \\
\end{matrix} \right.\]
Now, we can generalise the solution by observation as \[|b|-|a|\And \left( b\ s gn b-a\ s gn a \right)\]from options.
\[|b|-|a|=\left\{ \begin{matrix}
b-a,a\ge 0,b\ge 0 \\
a-b,a\le 0,b\le 0 \\
-b-a,a\ge 0,b\le 0 \\
a+b,a\le 0,b\ge 0 \\
\end{matrix} \right.\]
We can note down that generalization is done on the basis of modulus function as follows: -
\[\begin{align}
& |x|=\left\{ \begin{matrix}
x,x>0 \\
-x,x<0 \\
0,x=0 \\
\end{matrix} \right. \\
& b\ s gn b-a\ s gn a=\left\{ \begin{matrix}
b-a,a\ge 0,b\ge 0 \\
a-b,a\le 0,b\le 0 \\
-b-a,a\ge 0,b\le 0 \\
a+b,a\le 0,b\ge 0 \\
\end{matrix} \right. \\
\end{align}\]
Hence, option (a) and option (c) are correct.
Note: One can increase the number of cases by taking cases as a>0, b>0 and a>b or b
Complete step-by-step answer:
Here, we have given expression/function as –
\[\int\limits_{a}^{b}{\ s gn xdx}=?\]
As we can define \[\ s gn x\]function as follows:
\[\ s gn x=\left\{ \begin{matrix}
\dfrac{|x|}{x},x\ne 0 \\
0,x=0 \\
\end{matrix} \right.\]
Or
\[\ s gn x=\left\{ \begin{matrix}
1,x>0 \\
-1,x<0 \\
0,x=0 \\
\end{matrix} \right.\]
Representation on graph –
Case1: \[a\ge 0,b\ge 0\] \[a,b\in R\]
\[\int\limits_{a}^{b}{\ s gn x dx=\int\limits_{a}^{b}{1dx=b-a}}\]
As we can see from the graph or defined function that is a, b both are greater than 0 then \[\ s gn x=1\].
Case: 2 \[a\le 0,b\le 0\]
\[\int\limits_{a}^{b}{\ s gn (x)dx=\int\limits_{a}^{b}{-1dx=-(b-a)=a-b}}\]
Similarly, if \[a\le 0\And b\le 0\]then, \[\ s gn (x)=-1\].
Case: 3 \[a\ge 0,b\le 0\]
\[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{\ s gn (x)dx}}\]
We have a property of integration as
\[\int\limits_{a}^{b}{f(x)dx=-\int\limits_{b}^{a}{f(x)dx}}\]
Hence, \[\int\limits_{a}^{b}{\ s gn (x)dx=-\int\limits_{b}^{a}{\ s gn (x)dx}=-\left[ \int\limits_{b}^{0}{\ s gn (x)dx}+\int\limits_{0}^{a}{\ s gn (x)dx} \right]}\]
Property used: - \[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{c}{f(x)dx}+\int\limits_{c}^{b}{f(x)dx}\] if \[a
As b is negative, so from b to 0 \[\ s gn (x)=-1\]and a is positive hence, \[\ s gn x=1\].
\[-\int\limits_{b}^{a}{(-1)dx}-\int\limits_{0}^{a}{1dx}=-b-a\]
Case: 4 \[a\le 0,b\ge 0\]
Similarly, by using integrating properties explained in case 3 we can proceed here as well: -
\[\begin{align}
& \int\limits_{a}^{b}{\ s gn xdx}=\int\limits_{a}^{0}{\ s gn xdx}+\int\limits_{0}^{b}{\ s gn xdx} \\
& =\int\limits_{a}^{0}{-1dx}+\int\limits_{0}^{b}{+1dx} \\
& \Rightarrow a+b \\
\end{align}\]
Here, \[\int\limits_{a}^{b}{\ s gn xdx}=\left\{ \begin{matrix}
b-a,a\ge 0,b\ge 0 \\
a-b,a\le 0,b\le 0 \\
-b-a,a\ge 0,b\le 0 \\
a+b,a\le 0,b\ge 0 \\
\end{matrix} \right.\]
Now, we can generalise the solution by observation as \[|b|-|a|\And \left( b\ s gn b-a\ s gn a \right)\]from options.
\[|b|-|a|=\left\{ \begin{matrix}
b-a,a\ge 0,b\ge 0 \\
a-b,a\le 0,b\le 0 \\
-b-a,a\ge 0,b\le 0 \\
a+b,a\le 0,b\ge 0 \\
\end{matrix} \right.\]
We can note down that generalization is done on the basis of modulus function as follows: -
\[\begin{align}
& |x|=\left\{ \begin{matrix}
x,x>0 \\
-x,x<0 \\
0,x=0 \\
\end{matrix} \right. \\
& b\ s gn b-a\ s gn a=\left\{ \begin{matrix}
b-a,a\ge 0,b\ge 0 \\
a-b,a\le 0,b\le 0 \\
-b-a,a\ge 0,b\le 0 \\
a+b,a\le 0,b\ge 0 \\
\end{matrix} \right. \\
\end{align}\]
Hence, option (a) and option (c) are correct.
Note: One can increase the number of cases by taking cases as a>0, b>0 and a>b or b
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

