
Evaluate the given integral.
$ \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {{x^2} - 1} \right)}}dx} $
Answer
595.5k+ views
Hint: In this particular question use the concept of partial fraction so after applying partial fraction the function converts into a simple integral so use basic integration formulas to reach the solution of the question.
Complete step-by-step answer:
Given integral:
$ \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {{x^2} - 1} \right)}}dx} $
Let, $ I = \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {{x^2} - 1} \right)}}dx} $
Now as we know that $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ so use this property in the above integral we have,
$ \Rightarrow I = \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}dx} $
Now apply partial fraction we have,
Let, $ \dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{A}{{\left( {2x - 1} \right)}} + \dfrac{B}{{\left( {x - 1} \right)}} + \dfrac{C}{{\left( {x + 1} \right)}} $
Now simplify we have,
$ \Rightarrow {x^2} + 1 = A\left( {{x^2} - 1} \right) + B\left( {2x - 1} \right)\left( {x + 1} \right) + C\left( {2x - 1} \right)\left( {x - 1} \right) $
$ \Rightarrow {x^2} + 1 = A\left( {{x^2} - 1} \right) + B\left( {2{x^2} + x - 1} \right) + C\left( {2{x^2} - 3x + 1} \right) $
Now compare the coefficients of L.H.S and R.H.S we have,
$ \Rightarrow A + 2B + 2C = 1 $ ................ (1)
$ \Rightarrow B - 3C = 0 $ ................ (2)
$ \Rightarrow - A - B + C = 1 $ ............ (3)
Now add equation (2) and (3) we have,
$ \Rightarrow - A - 2C = 1 $ .............. (4)
Now add (1) and (4) we have,
$ \Rightarrow 2B = 2 $
$ \Rightarrow B = 1 $
Now from equation (2) we have,
$ \Rightarrow 1 - 3C = 0 $
$ \Rightarrow C = \dfrac{1}{3} $
Now from equation (4) we have,
$ \Rightarrow - A - 2\left( {\dfrac{1}{3}} \right) = 1 $
$ \Rightarrow - 1 - 2\left( {\dfrac{1}{3}} \right) = A $
$ \Rightarrow - 1 - \dfrac{2}{3} = A $
$ \Rightarrow A = \dfrac{{ - 5}}{3} $
So the integral becomes,
$ \Rightarrow I = \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}dx} = \int {\left( {\dfrac{A}{{\left( {2x - 1} \right)}} + \dfrac{B}{{\left( {x - 1} \right)}} + \dfrac{C}{{\left( {x + 1} \right)}}} \right)dx} $
Now substitute the values of A, B and C we have,
$ \Rightarrow I = \int {\left( {\dfrac{{\dfrac{{ - 5}}{3}}}{{\left( {2x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}} + \dfrac{{\dfrac{1}{3}}}{{\left( {x + 1} \right)}}} \right)dx} $
Now as we know that ( $ \int {\dfrac{1}{{ax \pm b}}dx} = \dfrac{{\log \left( {ax \pm b} \right)}}{a} + K $ ), where K is some arbitrary integration constant, so use this property in the above integral we have,
$ \Rightarrow I = \dfrac{{ - 5}}{3}\dfrac{{\log \left( {2x - 1} \right)}}{2} + \dfrac{{\log \left( {x - 1} \right)}}{1} + \dfrac{1}{3}\dfrac{{\log \left( {x + 1} \right)}}{1} + K $
$ \Rightarrow I = \dfrac{{ - 5}}{6}\log \left( {2x - 1} \right) + \log \left( {x - 1} \right) + \dfrac{1}{3}\log \left( {x + 1} \right) + K $
So this is the required solution of the given integral.
Note: Whenever we face such types of questions the key concept we have to remember is that partial fraction is the key these types of problems only solved by using partial fraction so first apply partial fraction as above then use basic integration formula ( $ \int {\dfrac{1}{{ax \pm b}}dx} = \dfrac{{\log \left( {ax \pm b} \right)}}{a} + K $ ), where K is some arbitrary integration constant so apply this as above we will get the required answer.
Complete step-by-step answer:
Given integral:
$ \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {{x^2} - 1} \right)}}dx} $
Let, $ I = \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {{x^2} - 1} \right)}}dx} $
Now as we know that $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ so use this property in the above integral we have,
$ \Rightarrow I = \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}dx} $
Now apply partial fraction we have,
Let, $ \dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{A}{{\left( {2x - 1} \right)}} + \dfrac{B}{{\left( {x - 1} \right)}} + \dfrac{C}{{\left( {x + 1} \right)}} $
Now simplify we have,
$ \Rightarrow {x^2} + 1 = A\left( {{x^2} - 1} \right) + B\left( {2x - 1} \right)\left( {x + 1} \right) + C\left( {2x - 1} \right)\left( {x - 1} \right) $
$ \Rightarrow {x^2} + 1 = A\left( {{x^2} - 1} \right) + B\left( {2{x^2} + x - 1} \right) + C\left( {2{x^2} - 3x + 1} \right) $
Now compare the coefficients of L.H.S and R.H.S we have,
$ \Rightarrow A + 2B + 2C = 1 $ ................ (1)
$ \Rightarrow B - 3C = 0 $ ................ (2)
$ \Rightarrow - A - B + C = 1 $ ............ (3)
Now add equation (2) and (3) we have,
$ \Rightarrow - A - 2C = 1 $ .............. (4)
Now add (1) and (4) we have,
$ \Rightarrow 2B = 2 $
$ \Rightarrow B = 1 $
Now from equation (2) we have,
$ \Rightarrow 1 - 3C = 0 $
$ \Rightarrow C = \dfrac{1}{3} $
Now from equation (4) we have,
$ \Rightarrow - A - 2\left( {\dfrac{1}{3}} \right) = 1 $
$ \Rightarrow - 1 - 2\left( {\dfrac{1}{3}} \right) = A $
$ \Rightarrow - 1 - \dfrac{2}{3} = A $
$ \Rightarrow A = \dfrac{{ - 5}}{3} $
So the integral becomes,
$ \Rightarrow I = \int {\dfrac{{{x^2} + 1}}{{\left( {2x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}dx} = \int {\left( {\dfrac{A}{{\left( {2x - 1} \right)}} + \dfrac{B}{{\left( {x - 1} \right)}} + \dfrac{C}{{\left( {x + 1} \right)}}} \right)dx} $
Now substitute the values of A, B and C we have,
$ \Rightarrow I = \int {\left( {\dfrac{{\dfrac{{ - 5}}{3}}}{{\left( {2x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}} + \dfrac{{\dfrac{1}{3}}}{{\left( {x + 1} \right)}}} \right)dx} $
Now as we know that ( $ \int {\dfrac{1}{{ax \pm b}}dx} = \dfrac{{\log \left( {ax \pm b} \right)}}{a} + K $ ), where K is some arbitrary integration constant, so use this property in the above integral we have,
$ \Rightarrow I = \dfrac{{ - 5}}{3}\dfrac{{\log \left( {2x - 1} \right)}}{2} + \dfrac{{\log \left( {x - 1} \right)}}{1} + \dfrac{1}{3}\dfrac{{\log \left( {x + 1} \right)}}{1} + K $
$ \Rightarrow I = \dfrac{{ - 5}}{6}\log \left( {2x - 1} \right) + \log \left( {x - 1} \right) + \dfrac{1}{3}\log \left( {x + 1} \right) + K $
So this is the required solution of the given integral.
Note: Whenever we face such types of questions the key concept we have to remember is that partial fraction is the key these types of problems only solved by using partial fraction so first apply partial fraction as above then use basic integration formula ( $ \int {\dfrac{1}{{ax \pm b}}dx} = \dfrac{{\log \left( {ax \pm b} \right)}}{a} + K $ ), where K is some arbitrary integration constant so apply this as above we will get the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

