
Evaluate the given expression: ${\left( { - 4} \right)^{ - 2}}$
A. $\dfrac{1}{{ - 16}}$
B. $\dfrac{1}{{16}}$
C.-16
D.16
Answer
554.4k+ views
Hint: It is given in the question that we have to Evaluate: ${\left( { - 4} \right)^{ - 2}}$ .
Then, apply the property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the given question.
Thus, find the value of ${\left( { - 4} \right)^{ - 2}}$ by using the above property.
Complete step-by-step answer:
It is given in the question that we have to Evaluate: ${\left( { - 4} \right)^{ - 2}}$ .
$ = {\left( { - 4} \right)^{ - 2}}$
By using property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the above question, we get
$ = \dfrac{1}{{{{\left( { - 4} \right)}^2}}}$
$ = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}}$
$ = \dfrac{1}{{16}}$
${\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{16}}$
Note: Some properties of exponents:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Then, apply the property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the given question.
Thus, find the value of ${\left( { - 4} \right)^{ - 2}}$ by using the above property.
Complete step-by-step answer:
It is given in the question that we have to Evaluate: ${\left( { - 4} \right)^{ - 2}}$ .
$ = {\left( { - 4} \right)^{ - 2}}$
By using property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the above question, we get
$ = \dfrac{1}{{{{\left( { - 4} \right)}^2}}}$
$ = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}}$
$ = \dfrac{1}{{16}}$
${\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{16}}$
Note: Some properties of exponents:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of ISI and RAW

What is the Full Form of ICSE, CBSE and SSC

Name 10 Living and Non living things class 9 biology CBSE

What are perennial rivers

Differentiate between the Western and the Eastern class 9 social science CBSE

What is the importance of natural resources? Why is it necessary to conserve them?


