
Evaluate the given expression: ${\left( { - 4} \right)^{ - 2}}$
A. $\dfrac{1}{{ - 16}}$
B. $\dfrac{1}{{16}}$
C.-16
D.16
Answer
581.4k+ views
Hint: It is given in the question that we have to Evaluate: ${\left( { - 4} \right)^{ - 2}}$ .
Then, apply the property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the given question.
Thus, find the value of ${\left( { - 4} \right)^{ - 2}}$ by using the above property.
Complete step-by-step answer:
It is given in the question that we have to Evaluate: ${\left( { - 4} \right)^{ - 2}}$ .
$ = {\left( { - 4} \right)^{ - 2}}$
By using property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the above question, we get
$ = \dfrac{1}{{{{\left( { - 4} \right)}^2}}}$
$ = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}}$
$ = \dfrac{1}{{16}}$
${\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{16}}$
Note: Some properties of exponents:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Then, apply the property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the given question.
Thus, find the value of ${\left( { - 4} \right)^{ - 2}}$ by using the above property.
Complete step-by-step answer:
It is given in the question that we have to Evaluate: ${\left( { - 4} \right)^{ - 2}}$ .
$ = {\left( { - 4} \right)^{ - 2}}$
By using property ${a^{ - m}} = \dfrac{1}{{{a^m}}}$ in the above question, we get
$ = \dfrac{1}{{{{\left( { - 4} \right)}^2}}}$
$ = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}}$
$ = \dfrac{1}{{16}}$
${\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{16}}$
Note: Some properties of exponents:
$
{a^m} \times {a^n} = {a^{m + n}} \\
{a^n} \times {b^n} = {\left( {a \times b} \right)^n} \\
\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} \\
\dfrac{{{a^n}}}{{{b^n}}} = {\left( {\dfrac{a}{b}} \right)^n} \\
{\left( {{a^m}} \right)^n} = {a^{m \times n}} \\
\sqrt[n]{{{a^m}}} = {a^{\dfrac{m}{n}}} \\
\sqrt[n]{a} = {a^{\dfrac{1}{n}}} \\
{a^{ - n}} = \dfrac{1}{{{a^n}}} \\
{a^0} = 1 \\
$
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


