
Evaluate the given expression:
$1 + \left( {{1^2} + {2^2}} \right) + \left( {{1^2} + {2^2} + {3^2}} \right) + ..... = $
Answer
618.9k+ views
Hint: Here we can solve it by analyzing the problem and using summation on the general term. Try to convert the expression in the form of the sum of the square of the first n natural number. From there try to generalise the equation. Then apply these formula:
Sum of first n natural numbers, $\sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}} $
Sum of squares to first n natural numbers $\sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
Sum of cubes of first n natural numbers ${\sum\limits_{k = 1}^n {{k^3} = \left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]} ^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Complete step-by-step answer:
Let ${s_n} = 1 + \left( {{1^2} + {2^2}} \right) + \left( {{1^2} + {2^2} + {3^2}} \right) + .....$
By considering the above series carefully we can write the last term of this series as ${a_n} = \left( {{1^2} + {2^2} + {3^2} + ..... + {n^2}} \right)$
Where n is any natural number
Since we know that the sum of square of first n natural numbers i.e. ${1^2} + {2^2} + {3^2} + ..... + {n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
\[ \Rightarrow {a_n} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} = \dfrac{{n\left( {2{n^2} + 3n + 1} \right)}}{6} = \dfrac{{2{n^3} + 3{n^2} + n}}{6} = \dfrac{{{n^3}}}{3} + \dfrac{{{n^2}}}{2} + \dfrac{n}{6}\]
Also, the required sum of the given series Sn can be obtained by doing summation of any kth term where k varies from 1 to n. Therefore kth term can be obtained by replacing n by k in the expression of an, we get
${a_k} = \dfrac{{{k^3}}}{3} + \dfrac{{{k^2}}}{2} + \dfrac{k}{6}$
$\therefore {S_n} = \sum\limits_{k = 1}^n {{a_k} = \sum\limits_{k = 1}^n {\left( {\dfrac{{{k^3}}}{3} + \dfrac{{{k^2}}}{2} + \dfrac{k}{6}} \right)} } = \dfrac{{\sum\limits_{k = 1}^n {{k^3}} }}{3} + \dfrac{{\sum\limits_{k = 1}^n {{k^2}} }}{2} + \dfrac{{\sum\limits_{k = 1}^n k }}{6}$ …… (1)
As we know that
Sum of first n natural numbers, $\sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}} $
Sum of squares to first n natural numbers $\sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
Sum of cubes of first n natural numbers ${\sum\limits_{k = 1}^n {{k^3} = \left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]} ^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Using above formulas equation (1) becomes
\[{S_n} = \dfrac{{\sum\limits_{k = 1}^n {{k^3}} }}{3} + \dfrac{{\sum\limits_{k = 1}^n {{k^2}} }}{2} + \dfrac{{\sum\limits_{k = 1}^n k }}{6} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4 \times 3}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6 \times 2}} + \dfrac{{n\left( {n + 1} \right)}}{{2 \times 6}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{12}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{12}} + \dfrac{{n\left( {n + 1} \right)}}{{12}}\]
\[{S_n} = \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {n\left( {n + 1} \right) + 2n + 1 + 1} \right] = \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {{n^2} + n + 2n + 2} \right] = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 3n + 2} \right)}}{{12}}\] …… (2)
Converting $\left( {{n^2} + 3n + 2} \right)$ into its factors, we can write
\[{n^2} + 3n + 2 = {n^2} + n + 2n + 2 = n\left( {n + 1} \right) + 2\left( {n + 1} \right) = \left( {n + 1} \right)\left( {n + 2} \right)\]
Therefore equation (2) becomes
${S_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 1} \right)\left( {n + 2} \right)}}{{12}} = \dfrac{{n{{\left( {n + 1} \right)}^2} + 2\left( {n + 1} \right)}}{{12}}$ where n is any natural number
Note: These types of problems can be solved by analyzing the given problem and finding any general term and then applying summation on the general term. Then using the formula of sum of first n natural numbers, sum of squares of first natural numbers and sum of the cube of the first n natural numbers.
Sum of first n natural numbers, $\sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}} $
Sum of squares to first n natural numbers $\sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
Sum of cubes of first n natural numbers ${\sum\limits_{k = 1}^n {{k^3} = \left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]} ^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Complete step-by-step answer:
Let ${s_n} = 1 + \left( {{1^2} + {2^2}} \right) + \left( {{1^2} + {2^2} + {3^2}} \right) + .....$
By considering the above series carefully we can write the last term of this series as ${a_n} = \left( {{1^2} + {2^2} + {3^2} + ..... + {n^2}} \right)$
Where n is any natural number
Since we know that the sum of square of first n natural numbers i.e. ${1^2} + {2^2} + {3^2} + ..... + {n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
\[ \Rightarrow {a_n} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} = \dfrac{{n\left( {2{n^2} + 3n + 1} \right)}}{6} = \dfrac{{2{n^3} + 3{n^2} + n}}{6} = \dfrac{{{n^3}}}{3} + \dfrac{{{n^2}}}{2} + \dfrac{n}{6}\]
Also, the required sum of the given series Sn can be obtained by doing summation of any kth term where k varies from 1 to n. Therefore kth term can be obtained by replacing n by k in the expression of an, we get
${a_k} = \dfrac{{{k^3}}}{3} + \dfrac{{{k^2}}}{2} + \dfrac{k}{6}$
$\therefore {S_n} = \sum\limits_{k = 1}^n {{a_k} = \sum\limits_{k = 1}^n {\left( {\dfrac{{{k^3}}}{3} + \dfrac{{{k^2}}}{2} + \dfrac{k}{6}} \right)} } = \dfrac{{\sum\limits_{k = 1}^n {{k^3}} }}{3} + \dfrac{{\sum\limits_{k = 1}^n {{k^2}} }}{2} + \dfrac{{\sum\limits_{k = 1}^n k }}{6}$ …… (1)
As we know that
Sum of first n natural numbers, $\sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}} $
Sum of squares to first n natural numbers $\sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
Sum of cubes of first n natural numbers ${\sum\limits_{k = 1}^n {{k^3} = \left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]} ^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Using above formulas equation (1) becomes
\[{S_n} = \dfrac{{\sum\limits_{k = 1}^n {{k^3}} }}{3} + \dfrac{{\sum\limits_{k = 1}^n {{k^2}} }}{2} + \dfrac{{\sum\limits_{k = 1}^n k }}{6} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4 \times 3}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6 \times 2}} + \dfrac{{n\left( {n + 1} \right)}}{{2 \times 6}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{12}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{12}} + \dfrac{{n\left( {n + 1} \right)}}{{12}}\]
\[{S_n} = \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {n\left( {n + 1} \right) + 2n + 1 + 1} \right] = \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {{n^2} + n + 2n + 2} \right] = \dfrac{{n\left( {n + 1} \right)\left( {{n^2} + 3n + 2} \right)}}{{12}}\] …… (2)
Converting $\left( {{n^2} + 3n + 2} \right)$ into its factors, we can write
\[{n^2} + 3n + 2 = {n^2} + n + 2n + 2 = n\left( {n + 1} \right) + 2\left( {n + 1} \right) = \left( {n + 1} \right)\left( {n + 2} \right)\]
Therefore equation (2) becomes
${S_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 1} \right)\left( {n + 2} \right)}}{{12}} = \dfrac{{n{{\left( {n + 1} \right)}^2} + 2\left( {n + 1} \right)}}{{12}}$ where n is any natural number
Note: These types of problems can be solved by analyzing the given problem and finding any general term and then applying summation on the general term. Then using the formula of sum of first n natural numbers, sum of squares of first natural numbers and sum of the cube of the first n natural numbers.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

