
Evaluate the following using identities:
$ \left( {1.5{x^2} - 0.3{y^2}} \right)\left( {1.5{x^2} + 0.3{y^2}} \right). $
Answer
521.4k+ views
Hint: The algebraic equations which are valid for every value of variables in them are called algebraic identities.
They are also used for the factorization of polynomials.
We are using such identity in this question.
$ \Rightarrow $ \[{a^2}\;-{\text{ }}{b^2} = {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right)\left( {a{\text{ }}-{\text{ }}b} \right)\]._ _ _ _ _ _ _ _ _ _ $ \left( 1 \right) $
Complete step-by-step answer:
The equation in the question is,
$ \Rightarrow \left( {1.5{x^2} - 0.3{y^2}} \right)\left( {1.5{x^2} + 0.3{y^2}} \right) $
So, here we can use the equation $ \left( 1 \right) $ identity.
\[{a^2}\;-{\text{ }}{b^2} = {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right)\left( {a{\text{ }}-{\text{ }}b} \right)\]
$ a = 1.5{x^2},b = 0.3{y^2} $
By using identity,
$
\Rightarrow {\left( {1.5{x^2}} \right)^2} - {\left( {0.3{y^2}} \right)^2} \\
\Rightarrow 2.25{x^4} - 0.09{y^{{4^{}}}} \;
$
Hence, using identities the solution is $ 2.25{x^4} - 0.09{y^{{4^{}}}} $ .
So, the correct answer is “ $ 2.25{x^4} - 0.09{y^{{4^{}}}} $ ”.
Note: $ \Rightarrow $ The algebraic identities are verified using the substitution method. In this method, substitute the values for the variables and perform the arithmetic operation.
$
\Rightarrow {\left( {a{\text{ }} + {\text{ }}b} \right)^2}\; = {\text{ }}{a^2}\; + {\text{ }}2ab{\text{ }} + {\text{ }}{b^2} \\
\Rightarrow {\left( {a{\text{ }}-{\text{ }}b} \right)^2}\; = {\text{ }}{a^2}\;-{\text{ }}2ab{\text{ }} + {\text{ }}{b^2} \\
\Rightarrow \left( {x{\text{ }} + {\text{ }}a} \right)\left( {x{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}{x^2}\; + {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }}x{\text{ }} + {\text{ }}ab \\
\Rightarrow {\;{a^3}\; + {\text{ }}{b^3}\; + {\text{ }}{c^{3\;}}-{\text{ }}3abc\; = {\text{ }}\left( {a{\text{ }} + {\text{ }}b{\text{ }} + {\text{ }}c} \right)\left( {{a^2}\; + {\text{ }}{b^2}\; + {\text{ }}{c^2}\;-{\text{ }}ab{\text{ }}-{\text{ }}bc{\text{ }}-{\text{ }}ca} \right)} \;
$
$ \Rightarrow $ Thus, the expression value can change if the variable values are changed. But algebraic identity is equality which is true for all the values of the variables.
They are also used for the factorization of polynomials.
We are using such identity in this question.
$ \Rightarrow $ \[{a^2}\;-{\text{ }}{b^2} = {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right)\left( {a{\text{ }}-{\text{ }}b} \right)\]._ _ _ _ _ _ _ _ _ _ $ \left( 1 \right) $
Complete step-by-step answer:
The equation in the question is,
$ \Rightarrow \left( {1.5{x^2} - 0.3{y^2}} \right)\left( {1.5{x^2} + 0.3{y^2}} \right) $
So, here we can use the equation $ \left( 1 \right) $ identity.
\[{a^2}\;-{\text{ }}{b^2} = {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right)\left( {a{\text{ }}-{\text{ }}b} \right)\]
$ a = 1.5{x^2},b = 0.3{y^2} $
By using identity,
$
\Rightarrow {\left( {1.5{x^2}} \right)^2} - {\left( {0.3{y^2}} \right)^2} \\
\Rightarrow 2.25{x^4} - 0.09{y^{{4^{}}}} \;
$
Hence, using identities the solution is $ 2.25{x^4} - 0.09{y^{{4^{}}}} $ .
So, the correct answer is “ $ 2.25{x^4} - 0.09{y^{{4^{}}}} $ ”.
Note: $ \Rightarrow $ The algebraic identities are verified using the substitution method. In this method, substitute the values for the variables and perform the arithmetic operation.
$
\Rightarrow {\left( {a{\text{ }} + {\text{ }}b} \right)^2}\; = {\text{ }}{a^2}\; + {\text{ }}2ab{\text{ }} + {\text{ }}{b^2} \\
\Rightarrow {\left( {a{\text{ }}-{\text{ }}b} \right)^2}\; = {\text{ }}{a^2}\;-{\text{ }}2ab{\text{ }} + {\text{ }}{b^2} \\
\Rightarrow \left( {x{\text{ }} + {\text{ }}a} \right)\left( {x{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}{x^2}\; + {\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }}x{\text{ }} + {\text{ }}ab \\
\Rightarrow {\;{a^3}\; + {\text{ }}{b^3}\; + {\text{ }}{c^{3\;}}-{\text{ }}3abc\; = {\text{ }}\left( {a{\text{ }} + {\text{ }}b{\text{ }} + {\text{ }}c} \right)\left( {{a^2}\; + {\text{ }}{b^2}\; + {\text{ }}{c^2}\;-{\text{ }}ab{\text{ }}-{\text{ }}bc{\text{ }}-{\text{ }}ca} \right)} \;
$
$ \Rightarrow $ Thus, the expression value can change if the variable values are changed. But algebraic identity is equality which is true for all the values of the variables.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

