
Evaluate the following trigonometric expression: \[\cos \alpha .\sin \left( \beta -\gamma \right)+\cos \beta .\sin \left( \gamma -\alpha \right)+\cos \gamma .\sin \left( \alpha -\beta \right)\]
(a) 0
(b) $\dfrac{1}{2}$
(c) 1
(d) $\cos \alpha .\cos \beta .\cos \gamma $
Answer
601.2k+ views
Hint: First use the formula $\sin \left( x-y \right)=\sin x\cos y-\cos x\sin y$ to expand the second part of each term. Then, multiply the first part (cosine part) to the expanded form of the second parts in each term. You will get six terms in total. Now, you will see that there are three pairs of terms which differ only in sign. Group these terms together. These terms cancel each other out and you will get 0 as the final answer.
Complete step-by-step answer:
In this question, we need to find the value of \[\cos \alpha .\sin \left( \beta -\gamma \right)+\cos \beta .\sin \left( \gamma -\alpha \right)+\cos \gamma .\sin \left( \alpha -\beta \right)\] among the given options.
For this, we will do the following.
We know that the sine of the difference of two angles x and y is equal to the difference of the product of sine of x and cosine of y and the product of cosine of x and sine of y.
i.e. $\sin \left( x-y \right)=\sin x\cos y-\cos x\sin y$
Using the above property in the given equation, we will get the following:
$\cos \alpha \sin \beta \cos \gamma -\cos \alpha \cos \beta \sin \gamma +\cos \beta \sin \gamma \cos \alpha -\cos \beta \cos \gamma \sin \alpha +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \cos \alpha \sin \beta $
$\cos \alpha \sin \beta \cos \gamma -\cos \alpha \cos \beta \sin \gamma +\cos \beta \sin \gamma \cos \alpha -\cos \beta \cos \gamma \sin \alpha +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \cos \alpha \sin \beta $We will rearrange this to get the following:
$\left( \cos \alpha \sin \beta \cos \gamma -\cos \gamma \cos \alpha \sin \beta \right)+\left( \cos \beta \sin \gamma \cos \alpha -\cos \alpha \cos \beta \sin \gamma \right)+\left( \cos \gamma \sin \alpha \cos \beta -\cos \beta \cos \gamma \sin \alpha \right)=0$As we can see, the terms in each of the brackets will get cancelled. So, all the terms are cancelled, and we will get 0.
So, \[\cos \alpha .\sin \left( \beta -\gamma \right)+\cos \beta .\sin \left( \gamma -\alpha \right)+\cos \gamma .\sin \left( \alpha -\beta \right)=0\]
Hence, (a) is the correct option.
Note: In this question, it is very important to know the property that that the sine of the difference of two angles x and y is equal to the difference of the product of sine of x and cosine of y and the product of cosine of x and sine of y. i.e. $\sin \left( x-y \right)=\sin x\cos y-\cos x\sin y$. Without this the question cannot be solved.
Complete step-by-step answer:
In this question, we need to find the value of \[\cos \alpha .\sin \left( \beta -\gamma \right)+\cos \beta .\sin \left( \gamma -\alpha \right)+\cos \gamma .\sin \left( \alpha -\beta \right)\] among the given options.
For this, we will do the following.
We know that the sine of the difference of two angles x and y is equal to the difference of the product of sine of x and cosine of y and the product of cosine of x and sine of y.
i.e. $\sin \left( x-y \right)=\sin x\cos y-\cos x\sin y$
Using the above property in the given equation, we will get the following:
$\cos \alpha \sin \beta \cos \gamma -\cos \alpha \cos \beta \sin \gamma +\cos \beta \sin \gamma \cos \alpha -\cos \beta \cos \gamma \sin \alpha +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \cos \alpha \sin \beta $
$\cos \alpha \sin \beta \cos \gamma -\cos \alpha \cos \beta \sin \gamma +\cos \beta \sin \gamma \cos \alpha -\cos \beta \cos \gamma \sin \alpha +\cos \gamma \sin \alpha \cos \beta -\cos \gamma \cos \alpha \sin \beta $We will rearrange this to get the following:
$\left( \cos \alpha \sin \beta \cos \gamma -\cos \gamma \cos \alpha \sin \beta \right)+\left( \cos \beta \sin \gamma \cos \alpha -\cos \alpha \cos \beta \sin \gamma \right)+\left( \cos \gamma \sin \alpha \cos \beta -\cos \beta \cos \gamma \sin \alpha \right)=0$As we can see, the terms in each of the brackets will get cancelled. So, all the terms are cancelled, and we will get 0.
So, \[\cos \alpha .\sin \left( \beta -\gamma \right)+\cos \beta .\sin \left( \gamma -\alpha \right)+\cos \gamma .\sin \left( \alpha -\beta \right)=0\]
Hence, (a) is the correct option.
Note: In this question, it is very important to know the property that that the sine of the difference of two angles x and y is equal to the difference of the product of sine of x and cosine of y and the product of cosine of x and sine of y. i.e. $\sin \left( x-y \right)=\sin x\cos y-\cos x\sin y$. Without this the question cannot be solved.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

