
Evaluate the following products without multiplying directly:
(i) \[103 \times 107\]
(ii) \[95 \times 96\]
(iii) \[104 \times 96\]
Answer
541.5k+ views
Hint:According to the given question, we will convert the numbers in the equations in the form of \[\left( {100 - x} \right)\] or \[\left( {100 + x} \right)\] .Then we will use different algebraic identities to get the desired result.
Formula used:
Here, we use the algebraic identities that is \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\] and \[\left( {a + b} \right)\left( {a - b} \right) = \left( {{a^2} - {b^2}} \right)\] .
Complete step by step solution:
(i) \[103 \times 107\]
Firstly we will rewrite both numbers in the form of \[\left( {100 - x} \right)\] or \[\left(
{100 + x} \right)\] depending on what is the best approach for that number.
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right)\]
Here, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\]
Putting \[a = 3\] , \[b = 7\] and \[x = 100\] .
On substituting the values in the identity we get,
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right) = {\left( {100} \right)^2} + \left( {3 + 7} \right)100 + 3 \times 7\]
After opening the squares and simplifying the above equation of right hand side we get,
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right) = 10000 + 1000 + 21\]
On adding the right hand side we get,
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right) = 11021\]
Hence, \[103 \times 107 = 11021\]
(ii) \[95 \times 96\]
Firstly we will rewrite both numbers in the form of \[\left( {100 - x} \right)\] or \[\left( {100 + x}
\right)\] depending on what is the best approach for that number.
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right)\]
Here, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\]
Putting \[a = - 5\] , \[b = - 4\] and \[x = 100\] .
On substituting the values in the identity we get,
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right) = {\left( {100} \right)^2} + \left( { - 5 - 4}
\right)100 + \left( { - 5 \times - 4} \right)\]
After opening the squares and simplifying the above equation of right hand side we get,
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right) = 10000 - 900 + 20\]
After solving the right hand side we get,
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right) = 9120\]
Hence, \[95 \times 96 = 9120\]
(iii) \[104 \times 96\]
Firstly we will rewrite both numbers in the form of \[\left( {100 - x} \right)\] or \[\left( {100 + x} \right)\] depending on what is the best approach for that number.
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right)\]
Here, we will use the algebraic identity \[\left( {a + b} \right)\left( {a - b} \right) = \left( {{a^2} - {b^2}} \right)\]
Putting \[a = 100\] and \[b = 4\] .
On substituting the values in the identity we get,
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right) = {\left( {100} \right)^2} - {\left( 4
\right)^2}\]
Now we will open the squares and simplify on right hand side we get,
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right) = 10000 - 16\]
After solving the right hand side we get,
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right) = 9984\]
Hence, \[104 \times 96 = 9984\]
Note: To solve these types of questions, you must remember the algebraic identities and convert the equations according to the requirement of the identity. So, carefully observe the value of a and b while substituting in the formula.
Formula used:
Here, we use the algebraic identities that is \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\] and \[\left( {a + b} \right)\left( {a - b} \right) = \left( {{a^2} - {b^2}} \right)\] .
Complete step by step solution:
(i) \[103 \times 107\]
Firstly we will rewrite both numbers in the form of \[\left( {100 - x} \right)\] or \[\left(
{100 + x} \right)\] depending on what is the best approach for that number.
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right)\]
Here, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\]
Putting \[a = 3\] , \[b = 7\] and \[x = 100\] .
On substituting the values in the identity we get,
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right) = {\left( {100} \right)^2} + \left( {3 + 7} \right)100 + 3 \times 7\]
After opening the squares and simplifying the above equation of right hand side we get,
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right) = 10000 + 1000 + 21\]
On adding the right hand side we get,
\[ \Rightarrow \left( {100 + 3} \right)\left( {100 + 7} \right) = 11021\]
Hence, \[103 \times 107 = 11021\]
(ii) \[95 \times 96\]
Firstly we will rewrite both numbers in the form of \[\left( {100 - x} \right)\] or \[\left( {100 + x}
\right)\] depending on what is the best approach for that number.
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right)\]
Here, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\]
Putting \[a = - 5\] , \[b = - 4\] and \[x = 100\] .
On substituting the values in the identity we get,
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right) = {\left( {100} \right)^2} + \left( { - 5 - 4}
\right)100 + \left( { - 5 \times - 4} \right)\]
After opening the squares and simplifying the above equation of right hand side we get,
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right) = 10000 - 900 + 20\]
After solving the right hand side we get,
\[ \Rightarrow \left( {100 - 5} \right)\left( {100 - 4} \right) = 9120\]
Hence, \[95 \times 96 = 9120\]
(iii) \[104 \times 96\]
Firstly we will rewrite both numbers in the form of \[\left( {100 - x} \right)\] or \[\left( {100 + x} \right)\] depending on what is the best approach for that number.
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right)\]
Here, we will use the algebraic identity \[\left( {a + b} \right)\left( {a - b} \right) = \left( {{a^2} - {b^2}} \right)\]
Putting \[a = 100\] and \[b = 4\] .
On substituting the values in the identity we get,
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right) = {\left( {100} \right)^2} - {\left( 4
\right)^2}\]
Now we will open the squares and simplify on right hand side we get,
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right) = 10000 - 16\]
After solving the right hand side we get,
\[ \Rightarrow \left( {100 + 4} \right)\left( {100 - 4} \right) = 9984\]
Hence, \[104 \times 96 = 9984\]
Note: To solve these types of questions, you must remember the algebraic identities and convert the equations according to the requirement of the identity. So, carefully observe the value of a and b while substituting in the formula.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

