Answer

Verified

437.7k+ views

**Hint:**First we will study the pattern carefully .By checking the left side we will find an increment in the digits. Using logic we will find out that the first term is 1 and in the second term 11+1=12 and this pattern continues such that in the last term it Is $11111 + 1111 + 111 + 11 + 1 = 12345$.

**Complete step by step solution:**

We can write $1 \times 8 + 1$as

$1 \times 8 + 1 = $\[\left( {1 \times {{10}^{1 - 1}}} \right) \times 8 + 1 = 9\]

Similarly we can write

$12 \times 8 + 2 = (11 + 1) \times 8 + 2$

\[ = \left( {1 \times {{10}^{2 - 1}} + 2 \times {{10}^{2 - 2}}} \right) \times 8 + 2 = 98\]

In this step we can write

$123 \times 8 + 3 = (111 + 11 + 1) \times 8 + 3$

=\[ = \left( {1 \times {{10}^{3 - 1}} + 2 \times {{10}^{3 - 2}} + 3 \times {{10}^{3 - 3}}} \right) \times 8 + 3 = 987\]

Similarly we write

$1234 \times 8 + 4 = (1111 + 111 + 11 + 1) \times 8 + 4$

\[ = \left( {1 \times {{10}^{4 - 1}} + 2 \times {{10}^{4 - 2}} + 3 \times {{10}^{4 - 3}} + 4 \times {{10}^{4 - 4}}} \right) \times 8 + 4 = 9876\]

We write

$12345 \times 8 + 5 = (11111 + 1111 + 111 + 11 + 1) \times 8 + 5$

\[ = \left( {1 \times {{10}^{5 - 1}} + 2 \times {{10}^{5 - 2}} + 3 \times {{10}^{5 - 3}} + 4 \times {{10}^{5 - 4}} + 5 \times {{10}^{5 - 5}}} \right) \times 8 + 5 = 98765\]

So, observing the similarity of the pattern we can say that

\[\left( {1 \times {{10}^{n - 1}} + 2 \times {{10}^{n - 2}} + 3 \times {{10}^{n - 3}} + ................ + n \times {{10}^{n - n}}} \right) \times 8 + 5 = \left( {\sum\limits_{i = 1}^n {i \times {{10}^{n - i}}} } \right) \times 8 + n\]

Thus, following the similarity of the pattern we can write the next four steps

$123456 \times 8 + 6 = (111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 6$$$ $$ \[ = \left( {1 \times {{10}^{6 - 1}} + 2 \times {{10}^{6 - 2}} + 3 \times {{10}^{6 - 3}} + ................ + 6 \times {{10}^{6 - 6}}} \right) \times 8 + 6 = 123456 \times 8 + 6 = 987654\]

Similarly in next step

$1234567 \times 8 + 7 = (1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 7 = 9876543$

In the next step

$12345678 \times 8 + 8 = (11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 8 = 98765432$

Similarly we can write in the next step

$123456789 \times 8 + 9 = (111111111 + 11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 9 = 987654321$

Thus we can find the next four steps.

**Note:**In Mathematics, number patterns are the patterns in which the numbers follow a certain similarity or common relationship. Example: $1,5,10,15, \ldots $in this pattern every term is multiple of $5$. The first task is to find the common similarity among the terms.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which places in India experience sunrise first and class 9 social science CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE