Answer

Verified

393.6k+ views

**Hint:**First we will study the pattern carefully .By checking the left side we will find an increment in the digits. Using logic we will find out that the first term is 1 and in the second term 11+1=12 and this pattern continues such that in the last term it Is $11111 + 1111 + 111 + 11 + 1 = 12345$.

**Complete step by step solution:**

We can write $1 \times 8 + 1$as

$1 \times 8 + 1 = $\[\left( {1 \times {{10}^{1 - 1}}} \right) \times 8 + 1 = 9\]

Similarly we can write

$12 \times 8 + 2 = (11 + 1) \times 8 + 2$

\[ = \left( {1 \times {{10}^{2 - 1}} + 2 \times {{10}^{2 - 2}}} \right) \times 8 + 2 = 98\]

In this step we can write

$123 \times 8 + 3 = (111 + 11 + 1) \times 8 + 3$

=\[ = \left( {1 \times {{10}^{3 - 1}} + 2 \times {{10}^{3 - 2}} + 3 \times {{10}^{3 - 3}}} \right) \times 8 + 3 = 987\]

Similarly we write

$1234 \times 8 + 4 = (1111 + 111 + 11 + 1) \times 8 + 4$

\[ = \left( {1 \times {{10}^{4 - 1}} + 2 \times {{10}^{4 - 2}} + 3 \times {{10}^{4 - 3}} + 4 \times {{10}^{4 - 4}}} \right) \times 8 + 4 = 9876\]

We write

$12345 \times 8 + 5 = (11111 + 1111 + 111 + 11 + 1) \times 8 + 5$

\[ = \left( {1 \times {{10}^{5 - 1}} + 2 \times {{10}^{5 - 2}} + 3 \times {{10}^{5 - 3}} + 4 \times {{10}^{5 - 4}} + 5 \times {{10}^{5 - 5}}} \right) \times 8 + 5 = 98765\]

So, observing the similarity of the pattern we can say that

\[\left( {1 \times {{10}^{n - 1}} + 2 \times {{10}^{n - 2}} + 3 \times {{10}^{n - 3}} + ................ + n \times {{10}^{n - n}}} \right) \times 8 + 5 = \left( {\sum\limits_{i = 1}^n {i \times {{10}^{n - i}}} } \right) \times 8 + n\]

Thus, following the similarity of the pattern we can write the next four steps

$123456 \times 8 + 6 = (111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 6$$$ $$ \[ = \left( {1 \times {{10}^{6 - 1}} + 2 \times {{10}^{6 - 2}} + 3 \times {{10}^{6 - 3}} + ................ + 6 \times {{10}^{6 - 6}}} \right) \times 8 + 6 = 123456 \times 8 + 6 = 987654\]

Similarly in next step

$1234567 \times 8 + 7 = (1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 7 = 9876543$

In the next step

$12345678 \times 8 + 8 = (11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 8 = 98765432$

Similarly we can write in the next step

$123456789 \times 8 + 9 = (111111111 + 11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 9 = 987654321$

Thus we can find the next four steps.

**Note:**In Mathematics, number patterns are the patterns in which the numbers follow a certain similarity or common relationship. Example: $1,5,10,15, \ldots $in this pattern every term is multiple of $5$. The first task is to find the common similarity among the terms.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail