
Evaluate the following pattern and provide step by step solution about how the pattern works. Also find out the next four steps of this pattern.
$1 \times 8 + 1 = 9$
$12 \times 8 + 2 = 98$
$123 \times 8 + 3 = 987$
$1234 \times 8 + 4 = 9876$
$12345 \times + 5 = 98765$
Answer
573.6k+ views
Hint: First we will study the pattern carefully .By checking the left side we will find an increment in the digits. Using logic we will find out that the first term is 1 and in the second term 11+1=12 and this pattern continues such that in the last term it Is $11111 + 1111 + 111 + 11 + 1 = 12345$.
Complete step by step solution:
We can write $1 \times 8 + 1$as
$1 \times 8 + 1 = $\[\left( {1 \times {{10}^{1 - 1}}} \right) \times 8 + 1 = 9\]
Similarly we can write
$12 \times 8 + 2 = (11 + 1) \times 8 + 2$
\[ = \left( {1 \times {{10}^{2 - 1}} + 2 \times {{10}^{2 - 2}}} \right) \times 8 + 2 = 98\]
In this step we can write
$123 \times 8 + 3 = (111 + 11 + 1) \times 8 + 3$
=\[ = \left( {1 \times {{10}^{3 - 1}} + 2 \times {{10}^{3 - 2}} + 3 \times {{10}^{3 - 3}}} \right) \times 8 + 3 = 987\]
Similarly we write
$1234 \times 8 + 4 = (1111 + 111 + 11 + 1) \times 8 + 4$
\[ = \left( {1 \times {{10}^{4 - 1}} + 2 \times {{10}^{4 - 2}} + 3 \times {{10}^{4 - 3}} + 4 \times {{10}^{4 - 4}}} \right) \times 8 + 4 = 9876\]
We write
$12345 \times 8 + 5 = (11111 + 1111 + 111 + 11 + 1) \times 8 + 5$
\[ = \left( {1 \times {{10}^{5 - 1}} + 2 \times {{10}^{5 - 2}} + 3 \times {{10}^{5 - 3}} + 4 \times {{10}^{5 - 4}} + 5 \times {{10}^{5 - 5}}} \right) \times 8 + 5 = 98765\]
So, observing the similarity of the pattern we can say that
\[\left( {1 \times {{10}^{n - 1}} + 2 \times {{10}^{n - 2}} + 3 \times {{10}^{n - 3}} + ................ + n \times {{10}^{n - n}}} \right) \times 8 + 5 = \left( {\sum\limits_{i = 1}^n {i \times {{10}^{n - i}}} } \right) \times 8 + n\]
Thus, following the similarity of the pattern we can write the next four steps
$123456 \times 8 + 6 = (111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 6$$$ $$ \[ = \left( {1 \times {{10}^{6 - 1}} + 2 \times {{10}^{6 - 2}} + 3 \times {{10}^{6 - 3}} + ................ + 6 \times {{10}^{6 - 6}}} \right) \times 8 + 6 = 123456 \times 8 + 6 = 987654\]
Similarly in next step
$1234567 \times 8 + 7 = (1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 7 = 9876543$
In the next step
$12345678 \times 8 + 8 = (11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 8 = 98765432$
Similarly we can write in the next step
$123456789 \times 8 + 9 = (111111111 + 11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 9 = 987654321$
Thus we can find the next four steps.
Note: In Mathematics, number patterns are the patterns in which the numbers follow a certain similarity or common relationship. Example: $1,5,10,15, \ldots $in this pattern every term is multiple of $5$. The first task is to find the common similarity among the terms.
Complete step by step solution:
We can write $1 \times 8 + 1$as
$1 \times 8 + 1 = $\[\left( {1 \times {{10}^{1 - 1}}} \right) \times 8 + 1 = 9\]
Similarly we can write
$12 \times 8 + 2 = (11 + 1) \times 8 + 2$
\[ = \left( {1 \times {{10}^{2 - 1}} + 2 \times {{10}^{2 - 2}}} \right) \times 8 + 2 = 98\]
In this step we can write
$123 \times 8 + 3 = (111 + 11 + 1) \times 8 + 3$
=\[ = \left( {1 \times {{10}^{3 - 1}} + 2 \times {{10}^{3 - 2}} + 3 \times {{10}^{3 - 3}}} \right) \times 8 + 3 = 987\]
Similarly we write
$1234 \times 8 + 4 = (1111 + 111 + 11 + 1) \times 8 + 4$
\[ = \left( {1 \times {{10}^{4 - 1}} + 2 \times {{10}^{4 - 2}} + 3 \times {{10}^{4 - 3}} + 4 \times {{10}^{4 - 4}}} \right) \times 8 + 4 = 9876\]
We write
$12345 \times 8 + 5 = (11111 + 1111 + 111 + 11 + 1) \times 8 + 5$
\[ = \left( {1 \times {{10}^{5 - 1}} + 2 \times {{10}^{5 - 2}} + 3 \times {{10}^{5 - 3}} + 4 \times {{10}^{5 - 4}} + 5 \times {{10}^{5 - 5}}} \right) \times 8 + 5 = 98765\]
So, observing the similarity of the pattern we can say that
\[\left( {1 \times {{10}^{n - 1}} + 2 \times {{10}^{n - 2}} + 3 \times {{10}^{n - 3}} + ................ + n \times {{10}^{n - n}}} \right) \times 8 + 5 = \left( {\sum\limits_{i = 1}^n {i \times {{10}^{n - i}}} } \right) \times 8 + n\]
Thus, following the similarity of the pattern we can write the next four steps
$123456 \times 8 + 6 = (111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 6$$$ $$ \[ = \left( {1 \times {{10}^{6 - 1}} + 2 \times {{10}^{6 - 2}} + 3 \times {{10}^{6 - 3}} + ................ + 6 \times {{10}^{6 - 6}}} \right) \times 8 + 6 = 123456 \times 8 + 6 = 987654\]
Similarly in next step
$1234567 \times 8 + 7 = (1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 7 = 9876543$
In the next step
$12345678 \times 8 + 8 = (11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 8 = 98765432$
Similarly we can write in the next step
$123456789 \times 8 + 9 = (111111111 + 11111111 + 1111111 + 111111 + 11111 + 1111 + 111 + 11 + 1) \times 8 + 9 = 987654321$
Thus we can find the next four steps.
Note: In Mathematics, number patterns are the patterns in which the numbers follow a certain similarity or common relationship. Example: $1,5,10,15, \ldots $in this pattern every term is multiple of $5$. The first task is to find the common similarity among the terms.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


