
Evaluate the following limit, L= $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$.
Answer
568.2k+ views
Hint: First we have to use the first formula of the limit which is, $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

