
Evaluate the following limit, L= $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$.
Answer
582k+ views
Hint: First we have to use the first formula of the limit which is, $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

