
Evaluate the following limit, L= $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$.
Answer
484.2k+ views
Hint: First we have to use the first formula of the limit which is, $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Find the area of the minor segment of a circle of radius class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

State BPT theorem and prove it class 10 maths CBSE

What is the relation between mean median and mode a class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
