
Evaluate the following limit, L= $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$.
Answer
567.6k+ views
Hint: First we have to use the first formula of the limit which is, $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Later we have to use laws of indices for the final calculation.
Complete step-by-step answer:
We have given, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}} \right)$
Now, First multiply and divide the numerator and denominator by, $x - 2$
So we get, L = $\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}}}{{\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}}}} \right)$
Separate the limit to the both numerator and the denominator, we get
L = $\dfrac{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{2}}} - {2^{\dfrac{1}{2}}}}}{{x - 2}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^{\dfrac{1}{3}}} - {2^{\dfrac{1}{3}}}}}{{x - 2}}} \right)}}$
Now apply the formula $\mathop {\lim }\limits_{x \to a} \left( {\dfrac{{{x^n} - {a^n}}}{{x - a}}} \right) = n{a^{n - 1}}$ to the numerator and denominator both,
So we get, L = $\dfrac{{\dfrac{1}{2}\left( {{2^{\dfrac{1}{2} - 1}}} \right)}}{{\dfrac{1}{3}\left( {{2^{\dfrac{1}{3} - 1}}} \right)}}$
Further solving we get,
L = $\dfrac{{3\left( {{2^{ - \dfrac{1}{2}}}} \right)}}{{2\left( {{2^{ - \dfrac{2}{3}}}} \right)}}$ (from $\dfrac{1}{2}$the 2 multiplies in to the denominator and in $\dfrac{1}{3}$ the 3 goes into the numerator)
By applying laws of the indices we get,
L = $\dfrac{3}{2}\left( {{2^{ - \dfrac{1}{2} + \dfrac{2}{3}}}} \right)$
L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Therefore our final value of the given limit is L = $\dfrac{3}{2}\left( {{2^{\dfrac{1}{6}}}} \right)$
Note: We have to always separate limit function to the numerator and denominator both otherwise we cannot apply the formula.
When using laws of indices we have to change the proper sign of power otherwise we get the wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

