
Evaluate the following integral: \[\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}\] .
Answer
591.6k+ views
Hint: We will first apply trigonometric properties of $\cos \theta $ given by $\cos 2\theta =2{{\cos }^{2}}\theta -1$ on the given integral which will help us to simplify the given integral and after that we will apply basic mathematics property like ${{a}^{2}}-{{b}^{2}}=\left( a+b \right).\left( a-b \right)$ , this will help to further simplify and then we can cut out the common terms from numerator and denominator which will leave us with basic integral of $\cos \theta $.
Complete step-by-step solution:
We will first apply the property of $\cos \theta $ , Now we know that:
$\cos 2\theta =2{{\cos }^{2}}\theta -1$
We will apply the above property on the numerator part of the given integral.
Now,
$\cos 2x=2{{\cos }^{2}}x-1$ and $\cos 2a=2{{\cos }^{2}}a-1$
Substituting these values in the given integral: \[\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}\]
\[\int{\dfrac{\left( 2{{\cos }^{2}}x-1 \right)-\left( 2{{\cos }^{2}}a-1 \right)}{\cos x-\cos a}dx}=\int{\dfrac{2{{\cos }^{2}}x-1-2{{\cos }^{2}}a+1}{\cos x-\cos a}dx}=\int{\dfrac{2{{\cos }^{2}}x-2{{\cos }^{2}}a}{\cos x-\cos a}dx}\]
Taking out the constant: $\int{a}\cdot f\left( x \right)dx=a\cdot \int{f}\left( x \right)dx$
We will then have: \[\int{\dfrac{2{{\cos }^{2}}x-2{{\cos }^{2}}a}{\cos x-\cos a}dx}=2\int{\dfrac{{{\cos }^{2}}x-{{\cos }^{2}}a}{\cos x-\cos a}dx}\text{ }..............\text{ Equation 1}\text{. }\]
Now we know that: ${{a}^{2}}-{{b}^{2}}=\left( a+b \right).\left( a-b \right)$
Applying it in the equation 1: \[2\int{\dfrac{{{\cos }^{2}}x-{{\cos }^{2}}a}{\cos x-\cos a}dx}=2\int{\dfrac{\left( \cos x-\cos a \right).\left( \cos x+\cos a \right)}{\cos x-\cos a}dx}\]
After cancelling out the terms, we will be left with: \[2\int{\left( \cos x+\cos a \right)dx}\]
Now we know the basic property of integration when it is given in the following form: \[\int{\left( f\left( x \right)+g\left( x \right) \right)}dx=\int{f\left( x \right)dx+}\int{g\left( x \right)dx}\]
We get:\[2\int{\left( \cos x+\cos a \right)dx}=2\left[ \int{\cos xdx+\int{\cos adx}} \right]\]
We will now apply the following two formulas for integration:
$\begin{align}
& \Rightarrow \int{\cos \theta d\theta =\sin \theta } \\
& \Rightarrow \int{dx=x} \\
\end{align}$
After applying the above two formulas in our question:
\[2\left[ \int{\cos xdx+\int{\cos adx}} \right]=2\left[ \sin x+x\cos a \right]+C\]
Therefore the result will be: \[\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}=2\left[ \sin x+x\cos a \right]+C\]
Note: Please note that $\cos a$ will not be integrated as we are finding out the integral with respect to the variable x, hence cos a will remain constant and the integral will give x as an output in the latter part of the integral. Do not get confused between the following integrations $\int{\cos \theta d\theta =\sin \theta }$ and $\int{\sin \theta d\theta =-\cos \theta }$ ; students might make mistakes with the negative sign in the output.
Complete step-by-step solution:
We will first apply the property of $\cos \theta $ , Now we know that:
$\cos 2\theta =2{{\cos }^{2}}\theta -1$
We will apply the above property on the numerator part of the given integral.
Now,
$\cos 2x=2{{\cos }^{2}}x-1$ and $\cos 2a=2{{\cos }^{2}}a-1$
Substituting these values in the given integral: \[\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}\]
\[\int{\dfrac{\left( 2{{\cos }^{2}}x-1 \right)-\left( 2{{\cos }^{2}}a-1 \right)}{\cos x-\cos a}dx}=\int{\dfrac{2{{\cos }^{2}}x-1-2{{\cos }^{2}}a+1}{\cos x-\cos a}dx}=\int{\dfrac{2{{\cos }^{2}}x-2{{\cos }^{2}}a}{\cos x-\cos a}dx}\]
Taking out the constant: $\int{a}\cdot f\left( x \right)dx=a\cdot \int{f}\left( x \right)dx$
We will then have: \[\int{\dfrac{2{{\cos }^{2}}x-2{{\cos }^{2}}a}{\cos x-\cos a}dx}=2\int{\dfrac{{{\cos }^{2}}x-{{\cos }^{2}}a}{\cos x-\cos a}dx}\text{ }..............\text{ Equation 1}\text{. }\]
Now we know that: ${{a}^{2}}-{{b}^{2}}=\left( a+b \right).\left( a-b \right)$
Applying it in the equation 1: \[2\int{\dfrac{{{\cos }^{2}}x-{{\cos }^{2}}a}{\cos x-\cos a}dx}=2\int{\dfrac{\left( \cos x-\cos a \right).\left( \cos x+\cos a \right)}{\cos x-\cos a}dx}\]
After cancelling out the terms, we will be left with: \[2\int{\left( \cos x+\cos a \right)dx}\]
Now we know the basic property of integration when it is given in the following form: \[\int{\left( f\left( x \right)+g\left( x \right) \right)}dx=\int{f\left( x \right)dx+}\int{g\left( x \right)dx}\]
We get:\[2\int{\left( \cos x+\cos a \right)dx}=2\left[ \int{\cos xdx+\int{\cos adx}} \right]\]
We will now apply the following two formulas for integration:
$\begin{align}
& \Rightarrow \int{\cos \theta d\theta =\sin \theta } \\
& \Rightarrow \int{dx=x} \\
\end{align}$
After applying the above two formulas in our question:
\[2\left[ \int{\cos xdx+\int{\cos adx}} \right]=2\left[ \sin x+x\cos a \right]+C\]
Therefore the result will be: \[\int{\dfrac{\cos 2x-\cos 2a}{\cos x-\cos a}dx}=2\left[ \sin x+x\cos a \right]+C\]
Note: Please note that $\cos a$ will not be integrated as we are finding out the integral with respect to the variable x, hence cos a will remain constant and the integral will give x as an output in the latter part of the integral. Do not get confused between the following integrations $\int{\cos \theta d\theta =\sin \theta }$ and $\int{\sin \theta d\theta =-\cos \theta }$ ; students might make mistakes with the negative sign in the output.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

