
Evaluate the following integral
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Answer
590.7k+ views
Hint: Write the term in the numerator ${{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x$ as ${{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}$, we can see that it became in the form of ${{a}^{3}}+{{b}^{3}}$ and then apply the formula of ${{a}^{3}}+{{b}^{3}}$ i.e. ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ . Simply it further and then integrate the resulting terms separately using the basic formulae of integration.
Complete step by step answer:
The given integrand seems complicated and it can not be integrated directly.
So, first we have to simplify it.
Consider, the given integral,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We will first write the numerator of the integrand as ${{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}$ and get the integral in form,
$\int{\dfrac{{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, we can see that the numerator of the integrand is in the form, ${{a}^{3}}+{{b}^{3}}$
We know that the formula of ${{a}^{3}}+{{b}^{3}}$ is ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Now, applying this formula to the numerator of integrand , we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We know from the trigonometric identities that
${{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x=1$
So, now the integral becomes,
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, adding and subtracting $2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x$ to the numerator of the integrand, we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x+2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, If you see the first 3 terms of numerator, it is an identity
${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
So, using this identity the integral becomes,
$\int{\dfrac{\left( {{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)}^{2}}-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Again using the trigonometric identity, we get
$\int{\dfrac{1-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, separating the terms in the integrand, we get
$\int{\left( \dfrac{1}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}-3 \right)dx}$
$\int{\left( \dfrac{1}{{{\operatorname{Cos}}^{2}}x}+\dfrac{1}{{{\operatorname{Sin}}^{2}}x}-3 \right)dx}$
We know from trigonometric identities that,
$\dfrac{1}{{{\operatorname{Cos}}^{2}}x}={{\operatorname{Sec}}^{2}}x$ and $\dfrac{1}{{{\operatorname{Sin}}^{2}}x}={{\operatorname{Cosec}}^{2}}x$
Using these identities in the last step, we get
$\int{\left( {{\operatorname{Sec}}^{2}}x+{{\operatorname{Cosec}}^{2}}x-3 \right)dx}$
Now, we can use the basic integration formulas,
$\int{{{\operatorname{Sec}}^{2}}xdx=}\operatorname{Tan}x+C$ , $\int{{{\operatorname{Cosec}}^{2}}xdx=-\operatorname{Cot}x}+C$
And get the value of integral
$=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Hence,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$ $=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Note: The alternate method to solve this integral is by separating the integrand into 2 terms i.e.
\[\dfrac{{{\operatorname{Sin}}^{4}}x}{{{\operatorname{Cos}}^{2}}x}+\dfrac{{{\operatorname{Cos}}^{4}}x}{{{\operatorname{Sin}}^{2}}x}\] and then integrate them separately. Consider the first term, write ${{\operatorname{Sin}}^{2}}x$ as $1-{{\operatorname{Cos}}^{2}}x$ so that it becomes ${{\left( \operatorname{Sec}x-\operatorname{Cos}x \right)}^{2}}$ , expand this and you will get simplified terms which have direct integral formula . Similarly, we can evaluate the integral of the second term.
Complete step by step answer:
The given integrand seems complicated and it can not be integrated directly.
So, first we have to simplify it.
Consider, the given integral,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We will first write the numerator of the integrand as ${{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}$ and get the integral in form,
$\int{\dfrac{{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, we can see that the numerator of the integrand is in the form, ${{a}^{3}}+{{b}^{3}}$
We know that the formula of ${{a}^{3}}+{{b}^{3}}$ is ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Now, applying this formula to the numerator of integrand , we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We know from the trigonometric identities that
${{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x=1$
So, now the integral becomes,
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, adding and subtracting $2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x$ to the numerator of the integrand, we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x+2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, If you see the first 3 terms of numerator, it is an identity
${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
So, using this identity the integral becomes,
$\int{\dfrac{\left( {{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)}^{2}}-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Again using the trigonometric identity, we get
$\int{\dfrac{1-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, separating the terms in the integrand, we get
$\int{\left( \dfrac{1}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}-3 \right)dx}$
$\int{\left( \dfrac{1}{{{\operatorname{Cos}}^{2}}x}+\dfrac{1}{{{\operatorname{Sin}}^{2}}x}-3 \right)dx}$
We know from trigonometric identities that,
$\dfrac{1}{{{\operatorname{Cos}}^{2}}x}={{\operatorname{Sec}}^{2}}x$ and $\dfrac{1}{{{\operatorname{Sin}}^{2}}x}={{\operatorname{Cosec}}^{2}}x$
Using these identities in the last step, we get
$\int{\left( {{\operatorname{Sec}}^{2}}x+{{\operatorname{Cosec}}^{2}}x-3 \right)dx}$
Now, we can use the basic integration formulas,
$\int{{{\operatorname{Sec}}^{2}}xdx=}\operatorname{Tan}x+C$ , $\int{{{\operatorname{Cosec}}^{2}}xdx=-\operatorname{Cot}x}+C$
And get the value of integral
$=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Hence,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$ $=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Note: The alternate method to solve this integral is by separating the integrand into 2 terms i.e.
\[\dfrac{{{\operatorname{Sin}}^{4}}x}{{{\operatorname{Cos}}^{2}}x}+\dfrac{{{\operatorname{Cos}}^{4}}x}{{{\operatorname{Sin}}^{2}}x}\] and then integrate them separately. Consider the first term, write ${{\operatorname{Sin}}^{2}}x$ as $1-{{\operatorname{Cos}}^{2}}x$ so that it becomes ${{\left( \operatorname{Sec}x-\operatorname{Cos}x \right)}^{2}}$ , expand this and you will get simplified terms which have direct integral formula . Similarly, we can evaluate the integral of the second term.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

