
Evaluate the following integral
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Answer
511.2k+ views
Hint: Write the term in the numerator ${{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x$ as ${{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}$, we can see that it became in the form of ${{a}^{3}}+{{b}^{3}}$ and then apply the formula of ${{a}^{3}}+{{b}^{3}}$ i.e. ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$ . Simply it further and then integrate the resulting terms separately using the basic formulae of integration.
Complete step by step answer:
The given integrand seems complicated and it can not be integrated directly.
So, first we have to simplify it.
Consider, the given integral,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We will first write the numerator of the integrand as ${{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}$ and get the integral in form,
$\int{\dfrac{{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, we can see that the numerator of the integrand is in the form, ${{a}^{3}}+{{b}^{3}}$
We know that the formula of ${{a}^{3}}+{{b}^{3}}$ is ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Now, applying this formula to the numerator of integrand , we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We know from the trigonometric identities that
${{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x=1$
So, now the integral becomes,
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, adding and subtracting $2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x$ to the numerator of the integrand, we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x+2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, If you see the first 3 terms of numerator, it is an identity
${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
So, using this identity the integral becomes,
$\int{\dfrac{\left( {{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)}^{2}}-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Again using the trigonometric identity, we get
$\int{\dfrac{1-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, separating the terms in the integrand, we get
$\int{\left( \dfrac{1}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}-3 \right)dx}$
$\int{\left( \dfrac{1}{{{\operatorname{Cos}}^{2}}x}+\dfrac{1}{{{\operatorname{Sin}}^{2}}x}-3 \right)dx}$
We know from trigonometric identities that,
$\dfrac{1}{{{\operatorname{Cos}}^{2}}x}={{\operatorname{Sec}}^{2}}x$ and $\dfrac{1}{{{\operatorname{Sin}}^{2}}x}={{\operatorname{Cosec}}^{2}}x$
Using these identities in the last step, we get
$\int{\left( {{\operatorname{Sec}}^{2}}x+{{\operatorname{Cosec}}^{2}}x-3 \right)dx}$
Now, we can use the basic integration formulas,
$\int{{{\operatorname{Sec}}^{2}}xdx=}\operatorname{Tan}x+C$ , $\int{{{\operatorname{Cosec}}^{2}}xdx=-\operatorname{Cot}x}+C$
And get the value of integral
$=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Hence,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$ $=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Note: The alternate method to solve this integral is by separating the integrand into 2 terms i.e.
\[\dfrac{{{\operatorname{Sin}}^{4}}x}{{{\operatorname{Cos}}^{2}}x}+\dfrac{{{\operatorname{Cos}}^{4}}x}{{{\operatorname{Sin}}^{2}}x}\] and then integrate them separately. Consider the first term, write ${{\operatorname{Sin}}^{2}}x$ as $1-{{\operatorname{Cos}}^{2}}x$ so that it becomes ${{\left( \operatorname{Sec}x-\operatorname{Cos}x \right)}^{2}}$ , expand this and you will get simplified terms which have direct integral formula . Similarly, we can evaluate the integral of the second term.
Complete step by step answer:
The given integrand seems complicated and it can not be integrated directly.
So, first we have to simplify it.
Consider, the given integral,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We will first write the numerator of the integrand as ${{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}$ and get the integral in form,
$\int{\dfrac{{{\left( {{\operatorname{Sin}}^{2}}x \right)}^{3}}+{{\left( {{\operatorname{Cos}}^{2}}x \right)}^{3}}}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, we can see that the numerator of the integrand is in the form, ${{a}^{3}}+{{b}^{3}}$
We know that the formula of ${{a}^{3}}+{{b}^{3}}$ is ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)$
Now, applying this formula to the numerator of integrand , we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
We know from the trigonometric identities that
${{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x=1$
So, now the integral becomes,
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x-{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, adding and subtracting $2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x$ to the numerator of the integrand, we get
$\int{\dfrac{\left( {{\operatorname{Sin}}^{4}}x+{{\operatorname{Cos}}^{4}}x+2{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, If you see the first 3 terms of numerator, it is an identity
${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
So, using this identity the integral becomes,
$\int{\dfrac{\left( {{\left( {{\operatorname{Sin}}^{2}}x+{{\operatorname{Cos}}^{2}}x \right)}^{2}}-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x \right)}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Again using the trigonometric identity, we get
$\int{\dfrac{1-3{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$
Now, separating the terms in the integrand, we get
$\int{\left( \dfrac{1}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}-3 \right)dx}$
$\int{\left( \dfrac{1}{{{\operatorname{Cos}}^{2}}x}+\dfrac{1}{{{\operatorname{Sin}}^{2}}x}-3 \right)dx}$
We know from trigonometric identities that,
$\dfrac{1}{{{\operatorname{Cos}}^{2}}x}={{\operatorname{Sec}}^{2}}x$ and $\dfrac{1}{{{\operatorname{Sin}}^{2}}x}={{\operatorname{Cosec}}^{2}}x$
Using these identities in the last step, we get
$\int{\left( {{\operatorname{Sec}}^{2}}x+{{\operatorname{Cosec}}^{2}}x-3 \right)dx}$
Now, we can use the basic integration formulas,
$\int{{{\operatorname{Sec}}^{2}}xdx=}\operatorname{Tan}x+C$ , $\int{{{\operatorname{Cosec}}^{2}}xdx=-\operatorname{Cot}x}+C$
And get the value of integral
$=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Hence,
$\int{\dfrac{{{\operatorname{Sin}}^{6}}x+{{\operatorname{Cos}}^{6}}x}{{{\operatorname{Sin}}^{2}}x{{\operatorname{Cos}}^{2}}x}dx}$ $=\operatorname{Tan}x-\operatorname{Cot}x-3x+C$
Note: The alternate method to solve this integral is by separating the integrand into 2 terms i.e.
\[\dfrac{{{\operatorname{Sin}}^{4}}x}{{{\operatorname{Cos}}^{2}}x}+\dfrac{{{\operatorname{Cos}}^{4}}x}{{{\operatorname{Sin}}^{2}}x}\] and then integrate them separately. Consider the first term, write ${{\operatorname{Sin}}^{2}}x$ as $1-{{\operatorname{Cos}}^{2}}x$ so that it becomes ${{\left( \operatorname{Sec}x-\operatorname{Cos}x \right)}^{2}}$ , expand this and you will get simplified terms which have direct integral formula . Similarly, we can evaluate the integral of the second term.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Who discovered the cell and how class 12 biology CBSE
