
Evaluate the following integral as limit of sum:
$\int\limits_{0}^{2}{{{e}^{x}}dx}$
Answer
607.2k+ views
Hint: Apply the formula,
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+......+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}.$
The given integral is
$\int\limits_{0}^{2}{{{e}^{x}}dx}$
By definition integral as limit of sum can be written as,
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+....+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}$
So, when we are converting an integral to a limit of sum we use the above formula.
Here \[f\left( x \right)\] is the function to be integrated with \[a\] as lower limit and \[b\] as upper limit.
The right hand side is the conversion to limit.
In this question our function is $'{{e}^{x}}'$ with \[0\] as lower limit and \[2\] is upper limit.
So, we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=\left( 2-0 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+h \right)}}+....+{{e}^{\left( o+\left( n-1 \right)h \right)}} \right]}.......\left( i \right)$
Now here we will find the value of ‘$h$ ‘.
$h=\dfrac{b-a}{n}$
Substituting the values of upper and lower limit, we get
$h=\dfrac{2-0}{n}=\dfrac{2}{n}..........\left( ii \right)$
Now substituting the value of the equation$\left( ii \right)$ in equation $\left( i \right)$ , we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+\dfrac{2}{n} \right)}}+....+{{e}^{\left( o+\left( n-1 \right)\dfrac{2}{n} \right)}} \right]}$
We know ${{e}^{0}}=1$ , so the above equation becomes,
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ 1+{{e}^{\left( \dfrac{2}{n} \right)}}+....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}} \right]}...........\left( iii \right)$
Now consider the series,
$1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}.........\left( iv \right)$
This is an geometric progression (GP) series with first term as ${{e}^{\left( \dfrac{2}{n} \right)}}$ , common ratio as ‘${{e}^{\dfrac{2}{n}}}$ ‘
Here we can also observe that there are ‘$n$’ terms in the series.
Now the sum of first $n$ terms of a $GP$ is
${{s}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r>1$
Where ‘$a$‘ is the first term, ‘$n$ ‘ is the number of terms and ‘$r$ ‘ is the common ratio.
Applying this formula in equation $\left( iv \right)$ series, we get
${{s}_{n}}=\dfrac{1\left( {{e}^{{{\left( \dfrac{2}{n} \right)}^{n}}-1}} \right)}{\left( {{e}^{\dfrac{2}{n}}}-1 \right)}$
${{s}_{n}}=\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Substituting this value in equation $\left( iii \right)$ we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Taking out the constant term, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{1}{n}}} \right)$
Now we will multiply and divide by $'2'$ in denominator, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2\left[ \dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}} \right]} \right).........(iv)$
We know the formula,
$\underset{t\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{t}}-1}{t}=1$
We know, as $n\to \infty $ then $\dfrac{2}{n}\to 0$ .
So, the denominator can be written as,
$\underset{\dfrac{2}{n}\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}}=1$
Substituting this value in the equation (iv), we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2(1)} \right)$
As this is free from $'n'$ term so the value remain same even after applying the limit, so the above equation can be written as,
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\left( \dfrac{1}{2} \right)=({{e}^{2}}-1)$
Hence this is the required integral value.
Note: Student might get confused looking at the series $1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}$.
They might take this as an arithmetic progression series. If we apply the AP series formula, we will get the wrong answer.
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+......+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}.$
The given integral is
$\int\limits_{0}^{2}{{{e}^{x}}dx}$
By definition integral as limit of sum can be written as,
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+....+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}$
So, when we are converting an integral to a limit of sum we use the above formula.
Here \[f\left( x \right)\] is the function to be integrated with \[a\] as lower limit and \[b\] as upper limit.
The right hand side is the conversion to limit.
In this question our function is $'{{e}^{x}}'$ with \[0\] as lower limit and \[2\] is upper limit.
So, we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=\left( 2-0 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+h \right)}}+....+{{e}^{\left( o+\left( n-1 \right)h \right)}} \right]}.......\left( i \right)$
Now here we will find the value of ‘$h$ ‘.
$h=\dfrac{b-a}{n}$
Substituting the values of upper and lower limit, we get
$h=\dfrac{2-0}{n}=\dfrac{2}{n}..........\left( ii \right)$
Now substituting the value of the equation$\left( ii \right)$ in equation $\left( i \right)$ , we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+\dfrac{2}{n} \right)}}+....+{{e}^{\left( o+\left( n-1 \right)\dfrac{2}{n} \right)}} \right]}$
We know ${{e}^{0}}=1$ , so the above equation becomes,
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ 1+{{e}^{\left( \dfrac{2}{n} \right)}}+....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}} \right]}...........\left( iii \right)$
Now consider the series,
$1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}.........\left( iv \right)$
This is an geometric progression (GP) series with first term as ${{e}^{\left( \dfrac{2}{n} \right)}}$ , common ratio as ‘${{e}^{\dfrac{2}{n}}}$ ‘
Here we can also observe that there are ‘$n$’ terms in the series.
Now the sum of first $n$ terms of a $GP$ is
${{s}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r>1$
Where ‘$a$‘ is the first term, ‘$n$ ‘ is the number of terms and ‘$r$ ‘ is the common ratio.
Applying this formula in equation $\left( iv \right)$ series, we get
${{s}_{n}}=\dfrac{1\left( {{e}^{{{\left( \dfrac{2}{n} \right)}^{n}}-1}} \right)}{\left( {{e}^{\dfrac{2}{n}}}-1 \right)}$
${{s}_{n}}=\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Substituting this value in equation $\left( iii \right)$ we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Taking out the constant term, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{1}{n}}} \right)$
Now we will multiply and divide by $'2'$ in denominator, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2\left[ \dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}} \right]} \right).........(iv)$
We know the formula,
$\underset{t\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{t}}-1}{t}=1$
We know, as $n\to \infty $ then $\dfrac{2}{n}\to 0$ .
So, the denominator can be written as,
$\underset{\dfrac{2}{n}\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}}=1$
Substituting this value in the equation (iv), we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2(1)} \right)$
As this is free from $'n'$ term so the value remain same even after applying the limit, so the above equation can be written as,
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\left( \dfrac{1}{2} \right)=({{e}^{2}}-1)$
Hence this is the required integral value.
Note: Student might get confused looking at the series $1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}$.
They might take this as an arithmetic progression series. If we apply the AP series formula, we will get the wrong answer.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

