Answer
Verified
493.5k+ views
Hint: Apply the formula,
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+......+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}.$
The given integral is
$\int\limits_{0}^{2}{{{e}^{x}}dx}$
By definition integral as limit of sum can be written as,
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+....+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}$
So, when we are converting an integral to a limit of sum we use the above formula.
Here \[f\left( x \right)\] is the function to be integrated with \[a\] as lower limit and \[b\] as upper limit.
The right hand side is the conversion to limit.
In this question our function is $'{{e}^{x}}'$ with \[0\] as lower limit and \[2\] is upper limit.
So, we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=\left( 2-0 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+h \right)}}+....+{{e}^{\left( o+\left( n-1 \right)h \right)}} \right]}.......\left( i \right)$
Now here we will find the value of ‘$h$ ‘.
$h=\dfrac{b-a}{n}$
Substituting the values of upper and lower limit, we get
$h=\dfrac{2-0}{n}=\dfrac{2}{n}..........\left( ii \right)$
Now substituting the value of the equation$\left( ii \right)$ in equation $\left( i \right)$ , we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+\dfrac{2}{n} \right)}}+....+{{e}^{\left( o+\left( n-1 \right)\dfrac{2}{n} \right)}} \right]}$
We know ${{e}^{0}}=1$ , so the above equation becomes,
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ 1+{{e}^{\left( \dfrac{2}{n} \right)}}+....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}} \right]}...........\left( iii \right)$
Now consider the series,
$1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}.........\left( iv \right)$
This is an geometric progression (GP) series with first term as ${{e}^{\left( \dfrac{2}{n} \right)}}$ , common ratio as ‘${{e}^{\dfrac{2}{n}}}$ ‘
Here we can also observe that there are ‘$n$’ terms in the series.
Now the sum of first $n$ terms of a $GP$ is
${{s}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r>1$
Where ‘$a$‘ is the first term, ‘$n$ ‘ is the number of terms and ‘$r$ ‘ is the common ratio.
Applying this formula in equation $\left( iv \right)$ series, we get
${{s}_{n}}=\dfrac{1\left( {{e}^{{{\left( \dfrac{2}{n} \right)}^{n}}-1}} \right)}{\left( {{e}^{\dfrac{2}{n}}}-1 \right)}$
${{s}_{n}}=\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Substituting this value in equation $\left( iii \right)$ we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Taking out the constant term, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{1}{n}}} \right)$
Now we will multiply and divide by $'2'$ in denominator, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2\left[ \dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}} \right]} \right).........(iv)$
We know the formula,
$\underset{t\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{t}}-1}{t}=1$
We know, as $n\to \infty $ then $\dfrac{2}{n}\to 0$ .
So, the denominator can be written as,
$\underset{\dfrac{2}{n}\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}}=1$
Substituting this value in the equation (iv), we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2(1)} \right)$
As this is free from $'n'$ term so the value remain same even after applying the limit, so the above equation can be written as,
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\left( \dfrac{1}{2} \right)=({{e}^{2}}-1)$
Hence this is the required integral value.
Note: Student might get confused looking at the series $1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}$.
They might take this as an arithmetic progression series. If we apply the AP series formula, we will get the wrong answer.
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+......+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}.$
The given integral is
$\int\limits_{0}^{2}{{{e}^{x}}dx}$
By definition integral as limit of sum can be written as,
$\int\limits_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f\left( a+h \right)+....+f\left( a+\left( n-1 \right)h \right) \right]}$, where $h=\dfrac{b-a}{n}$
So, when we are converting an integral to a limit of sum we use the above formula.
Here \[f\left( x \right)\] is the function to be integrated with \[a\] as lower limit and \[b\] as upper limit.
The right hand side is the conversion to limit.
In this question our function is $'{{e}^{x}}'$ with \[0\] as lower limit and \[2\] is upper limit.
So, we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=\left( 2-0 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+h \right)}}+....+{{e}^{\left( o+\left( n-1 \right)h \right)}} \right]}.......\left( i \right)$
Now here we will find the value of ‘$h$ ‘.
$h=\dfrac{b-a}{n}$
Substituting the values of upper and lower limit, we get
$h=\dfrac{2-0}{n}=\dfrac{2}{n}..........\left( ii \right)$
Now substituting the value of the equation$\left( ii \right)$ in equation $\left( i \right)$ , we get
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{0}}+{{e}^{\left( o+\dfrac{2}{n} \right)}}+....+{{e}^{\left( o+\left( n-1 \right)\dfrac{2}{n} \right)}} \right]}$
We know ${{e}^{0}}=1$ , so the above equation becomes,
$\int\limits_{0}^{2}{{{e}^{x}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ 1+{{e}^{\left( \dfrac{2}{n} \right)}}+....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}} \right]}...........\left( iii \right)$
Now consider the series,
$1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}.........\left( iv \right)$
This is an geometric progression (GP) series with first term as ${{e}^{\left( \dfrac{2}{n} \right)}}$ , common ratio as ‘${{e}^{\dfrac{2}{n}}}$ ‘
Here we can also observe that there are ‘$n$’ terms in the series.
Now the sum of first $n$ terms of a $GP$ is
${{s}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1},r>1$
Where ‘$a$‘ is the first term, ‘$n$ ‘ is the number of terms and ‘$r$ ‘ is the common ratio.
Applying this formula in equation $\left( iv \right)$ series, we get
${{s}_{n}}=\dfrac{1\left( {{e}^{{{\left( \dfrac{2}{n} \right)}^{n}}-1}} \right)}{\left( {{e}^{\dfrac{2}{n}}}-1 \right)}$
${{s}_{n}}=\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Substituting this value in equation $\left( iii \right)$ we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \dfrac{{{e}^{2}}-1}{{{e}^{\dfrac{2}{n}}}-1} \right)$
Taking out the constant term, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{1}{n}}} \right)$
Now we will multiply and divide by $'2'$ in denominator, we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2\left[ \dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}} \right]} \right).........(iv)$
We know the formula,
$\underset{t\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{t}}-1}{t}=1$
We know, as $n\to \infty $ then $\dfrac{2}{n}\to 0$ .
So, the denominator can be written as,
$\underset{\dfrac{2}{n}\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{\dfrac{2}{n}}}-1}{\dfrac{2}{n}}=1$
Substituting this value in the equation (iv), we get
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{2(1)} \right)$
As this is free from $'n'$ term so the value remain same even after applying the limit, so the above equation can be written as,
$\int\limits_{0}^{2}{{{e}^{x}}}dx=2({{e}^{2}}-1)\left( \dfrac{1}{2} \right)=({{e}^{2}}-1)$
Hence this is the required integral value.
Note: Student might get confused looking at the series $1+{{e}^{\left( \dfrac{2}{n} \right)}}+.....+{{e}^{\dfrac{2}{n}\left( n-1 \right)}}$.
They might take this as an arithmetic progression series. If we apply the AP series formula, we will get the wrong answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE