Answer
Verified
493.2k+ views
Hint: Use the formulae: -
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) \\
\end{align}\]
Complete step-by-step answer:
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
We know, \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
And \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}+{{\left( {{b}^{2}} \right)}^{2}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}=\left( {{a}^{4}}+{{b}^{4}} \right)-2{{a}^{2}}{{b}^{2}} \\
\end{align}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
Use the formulae to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=2x and b=5.
\[\begin{align}
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left[ {{\left( 2x \right)}^{2}}+2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right]-\left[ {{\left( 2x \right)}^{2}}-2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right] \\
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left( 4{{x}^{2}}+20x+25 \right)-\left( 4{{x}^{2}}-20x+25 \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =4{{x}^{2}}+20x+25-4{{x}^{2}}+20x-25 \\
& =20x+20x=40x \\
& \therefore {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=40x \\
\end{align}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
Use the formula to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=7m and b=8n.
\[\begin{align}
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left[ {{\left( 7m \right)}^{2}}+2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right]+\left[ {{\left( 7m \right)}^{2}}-2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right] \\
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left( 49{{m}^{2}}-112mn+64{{n}^{2}} \right)+\left( 49{{m}^{2}}+112mn+64{{n}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =49{{m}^{2}}-112mn+64{{n}^{2}}+49{{m}^{2}}+112mn+64{{n}^{2}} \\
& =98{{m}^{2}}+128{{n}^{2}} \\
& =2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
& \therefore {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
\end{align}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
We can use the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}} \\
& =\left[ {{\left( 4m \right)}^{2}}+2\left( 4m \right)\left( 5n \right)+{{\left( 5n \right)}^{2}} \right]+\left[ {{\left( 4n \right)}^{2}}+2\left( 4n \right)\left( 5m \right)+{{\left( 5m \right)}^{2}} \right] \\
& =\left( 16{{m}^{2}}+40mn+25{{n}^{2}} \right)+\left( 16{{n}^{2}}+40mn+25{{m}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =16{{m}^{2}}+40mn+25{{n}^{2}}+16{{n}^{2}}+40mn+25{{m}^{2}} \\
& =\left( 16{{m}^{2}}+25{{m}^{2}} \right)+\left( 40mn+40mn \right)+\left( 25{{n}^{2}}+16{{n}^{2}} \right) \\
& =41{{m}^{2}}+80mn+41{{n}^{2}} \\
& \therefore {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}=41{{m}^{2}}+80mn+41{{n}^{2}} \\
\end{align}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
We can use the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}= \\
& =\left[ {{\left( 2.5p \right)}^{2}}-2\left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \right]-\left[ {{\left( 1.5p \right)}^{2}}-2\left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \right] \\
& =\left( 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}} \right)-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& =6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =\left( 6.25-2.25 \right){{p}^{2}}+\left( 2.25-6.25 \right){{q}^{2}} \\
& =4{{p}^{2}}+\left( -4 \right){{q}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right)=4\left( p+q \right)\left( p-q \right) \\
& \therefore {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
Using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{\left( ab \right)}^{2}}+2\left( ab \right)\left( bc \right)+{{\left( bc \right)}^{2}}-2a{{b}^{2}}c\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+2a{{b}^{2}}c+{{b}^{2}}{{c}^{2}}-2a{{b}^{2}}c\]
\[\begin{align}
& {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
& \therefore {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
\end{align}\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Using the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{\left( {{m}^{2}} \right)}^{2}}-2\left( {{m}^{2}} \right)\left( {{n}^{2}}m \right)+{{\left( {{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}} \\
& ={{m}^{4}}-2{{n}^{2}}{{m}^{3}}+{{n}^{4}}{{m}^{2}}+2{{n}^{2}}{{m}^{3}} \\
& ={{m}^{4}}+{{n}^{4}}{{m}^{2}} \\
& ={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
\end{align}\]
Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) \\
\end{align}\]
Complete step-by-step answer:
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
We know, \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
And \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}+{{\left( {{b}^{2}} \right)}^{2}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}=\left( {{a}^{4}}+{{b}^{4}} \right)-2{{a}^{2}}{{b}^{2}} \\
\end{align}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
Use the formulae to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=2x and b=5.
\[\begin{align}
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left[ {{\left( 2x \right)}^{2}}+2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right]-\left[ {{\left( 2x \right)}^{2}}-2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right] \\
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left( 4{{x}^{2}}+20x+25 \right)-\left( 4{{x}^{2}}-20x+25 \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =4{{x}^{2}}+20x+25-4{{x}^{2}}+20x-25 \\
& =20x+20x=40x \\
& \therefore {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=40x \\
\end{align}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
Use the formula to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=7m and b=8n.
\[\begin{align}
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left[ {{\left( 7m \right)}^{2}}+2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right]+\left[ {{\left( 7m \right)}^{2}}-2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right] \\
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left( 49{{m}^{2}}-112mn+64{{n}^{2}} \right)+\left( 49{{m}^{2}}+112mn+64{{n}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =49{{m}^{2}}-112mn+64{{n}^{2}}+49{{m}^{2}}+112mn+64{{n}^{2}} \\
& =98{{m}^{2}}+128{{n}^{2}} \\
& =2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
& \therefore {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
\end{align}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
We can use the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}} \\
& =\left[ {{\left( 4m \right)}^{2}}+2\left( 4m \right)\left( 5n \right)+{{\left( 5n \right)}^{2}} \right]+\left[ {{\left( 4n \right)}^{2}}+2\left( 4n \right)\left( 5m \right)+{{\left( 5m \right)}^{2}} \right] \\
& =\left( 16{{m}^{2}}+40mn+25{{n}^{2}} \right)+\left( 16{{n}^{2}}+40mn+25{{m}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =16{{m}^{2}}+40mn+25{{n}^{2}}+16{{n}^{2}}+40mn+25{{m}^{2}} \\
& =\left( 16{{m}^{2}}+25{{m}^{2}} \right)+\left( 40mn+40mn \right)+\left( 25{{n}^{2}}+16{{n}^{2}} \right) \\
& =41{{m}^{2}}+80mn+41{{n}^{2}} \\
& \therefore {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}=41{{m}^{2}}+80mn+41{{n}^{2}} \\
\end{align}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
We can use the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}= \\
& =\left[ {{\left( 2.5p \right)}^{2}}-2\left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \right]-\left[ {{\left( 1.5p \right)}^{2}}-2\left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \right] \\
& =\left( 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}} \right)-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& =6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =\left( 6.25-2.25 \right){{p}^{2}}+\left( 2.25-6.25 \right){{q}^{2}} \\
& =4{{p}^{2}}+\left( -4 \right){{q}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right)=4\left( p+q \right)\left( p-q \right) \\
& \therefore {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
Using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{\left( ab \right)}^{2}}+2\left( ab \right)\left( bc \right)+{{\left( bc \right)}^{2}}-2a{{b}^{2}}c\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+2a{{b}^{2}}c+{{b}^{2}}{{c}^{2}}-2a{{b}^{2}}c\]
\[\begin{align}
& {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
& \therefore {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
\end{align}\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Using the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{\left( {{m}^{2}} \right)}^{2}}-2\left( {{m}^{2}} \right)\left( {{n}^{2}}m \right)+{{\left( {{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}} \\
& ={{m}^{4}}-2{{n}^{2}}{{m}^{3}}+{{n}^{4}}{{m}^{2}}+2{{n}^{2}}{{m}^{3}} \\
& ={{m}^{4}}+{{n}^{4}}{{m}^{2}} \\
& ={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
\end{align}\]
Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE