
Evaluate the following : -
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Answer
593.7k+ views
Hint: Use the formulae: -
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) \\
\end{align}\]
Complete step-by-step answer:
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
We know, \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
And \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}+{{\left( {{b}^{2}} \right)}^{2}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}=\left( {{a}^{4}}+{{b}^{4}} \right)-2{{a}^{2}}{{b}^{2}} \\
\end{align}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
Use the formulae to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=2x and b=5.
\[\begin{align}
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left[ {{\left( 2x \right)}^{2}}+2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right]-\left[ {{\left( 2x \right)}^{2}}-2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right] \\
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left( 4{{x}^{2}}+20x+25 \right)-\left( 4{{x}^{2}}-20x+25 \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =4{{x}^{2}}+20x+25-4{{x}^{2}}+20x-25 \\
& =20x+20x=40x \\
& \therefore {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=40x \\
\end{align}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
Use the formula to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=7m and b=8n.
\[\begin{align}
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left[ {{\left( 7m \right)}^{2}}+2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right]+\left[ {{\left( 7m \right)}^{2}}-2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right] \\
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left( 49{{m}^{2}}-112mn+64{{n}^{2}} \right)+\left( 49{{m}^{2}}+112mn+64{{n}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =49{{m}^{2}}-112mn+64{{n}^{2}}+49{{m}^{2}}+112mn+64{{n}^{2}} \\
& =98{{m}^{2}}+128{{n}^{2}} \\
& =2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
& \therefore {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
\end{align}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
We can use the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}} \\
& =\left[ {{\left( 4m \right)}^{2}}+2\left( 4m \right)\left( 5n \right)+{{\left( 5n \right)}^{2}} \right]+\left[ {{\left( 4n \right)}^{2}}+2\left( 4n \right)\left( 5m \right)+{{\left( 5m \right)}^{2}} \right] \\
& =\left( 16{{m}^{2}}+40mn+25{{n}^{2}} \right)+\left( 16{{n}^{2}}+40mn+25{{m}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =16{{m}^{2}}+40mn+25{{n}^{2}}+16{{n}^{2}}+40mn+25{{m}^{2}} \\
& =\left( 16{{m}^{2}}+25{{m}^{2}} \right)+\left( 40mn+40mn \right)+\left( 25{{n}^{2}}+16{{n}^{2}} \right) \\
& =41{{m}^{2}}+80mn+41{{n}^{2}} \\
& \therefore {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}=41{{m}^{2}}+80mn+41{{n}^{2}} \\
\end{align}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
We can use the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}= \\
& =\left[ {{\left( 2.5p \right)}^{2}}-2\left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \right]-\left[ {{\left( 1.5p \right)}^{2}}-2\left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \right] \\
& =\left( 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}} \right)-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& =6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =\left( 6.25-2.25 \right){{p}^{2}}+\left( 2.25-6.25 \right){{q}^{2}} \\
& =4{{p}^{2}}+\left( -4 \right){{q}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right)=4\left( p+q \right)\left( p-q \right) \\
& \therefore {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
Using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{\left( ab \right)}^{2}}+2\left( ab \right)\left( bc \right)+{{\left( bc \right)}^{2}}-2a{{b}^{2}}c\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+2a{{b}^{2}}c+{{b}^{2}}{{c}^{2}}-2a{{b}^{2}}c\]
\[\begin{align}
& {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
& \therefore {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
\end{align}\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Using the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{\left( {{m}^{2}} \right)}^{2}}-2\left( {{m}^{2}} \right)\left( {{n}^{2}}m \right)+{{\left( {{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}} \\
& ={{m}^{4}}-2{{n}^{2}}{{m}^{3}}+{{n}^{4}}{{m}^{2}}+2{{n}^{2}}{{m}^{3}} \\
& ={{m}^{4}}+{{n}^{4}}{{m}^{2}} \\
& ={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
\end{align}\]
Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) \\
\end{align}\]
Complete step-by-step answer:
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
We know, \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
And \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}+{{\left( {{b}^{2}} \right)}^{2}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}=\left( {{a}^{4}}+{{b}^{4}} \right)-2{{a}^{2}}{{b}^{2}} \\
\end{align}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
Use the formulae to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=2x and b=5.
\[\begin{align}
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left[ {{\left( 2x \right)}^{2}}+2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right]-\left[ {{\left( 2x \right)}^{2}}-2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right] \\
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left( 4{{x}^{2}}+20x+25 \right)-\left( 4{{x}^{2}}-20x+25 \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =4{{x}^{2}}+20x+25-4{{x}^{2}}+20x-25 \\
& =20x+20x=40x \\
& \therefore {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=40x \\
\end{align}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
Use the formula to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=7m and b=8n.
\[\begin{align}
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left[ {{\left( 7m \right)}^{2}}+2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right]+\left[ {{\left( 7m \right)}^{2}}-2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right] \\
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left( 49{{m}^{2}}-112mn+64{{n}^{2}} \right)+\left( 49{{m}^{2}}+112mn+64{{n}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =49{{m}^{2}}-112mn+64{{n}^{2}}+49{{m}^{2}}+112mn+64{{n}^{2}} \\
& =98{{m}^{2}}+128{{n}^{2}} \\
& =2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
& \therefore {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
\end{align}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
We can use the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}} \\
& =\left[ {{\left( 4m \right)}^{2}}+2\left( 4m \right)\left( 5n \right)+{{\left( 5n \right)}^{2}} \right]+\left[ {{\left( 4n \right)}^{2}}+2\left( 4n \right)\left( 5m \right)+{{\left( 5m \right)}^{2}} \right] \\
& =\left( 16{{m}^{2}}+40mn+25{{n}^{2}} \right)+\left( 16{{n}^{2}}+40mn+25{{m}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =16{{m}^{2}}+40mn+25{{n}^{2}}+16{{n}^{2}}+40mn+25{{m}^{2}} \\
& =\left( 16{{m}^{2}}+25{{m}^{2}} \right)+\left( 40mn+40mn \right)+\left( 25{{n}^{2}}+16{{n}^{2}} \right) \\
& =41{{m}^{2}}+80mn+41{{n}^{2}} \\
& \therefore {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}=41{{m}^{2}}+80mn+41{{n}^{2}} \\
\end{align}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
We can use the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}= \\
& =\left[ {{\left( 2.5p \right)}^{2}}-2\left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \right]-\left[ {{\left( 1.5p \right)}^{2}}-2\left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \right] \\
& =\left( 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}} \right)-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& =6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =\left( 6.25-2.25 \right){{p}^{2}}+\left( 2.25-6.25 \right){{q}^{2}} \\
& =4{{p}^{2}}+\left( -4 \right){{q}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right)=4\left( p+q \right)\left( p-q \right) \\
& \therefore {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
Using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{\left( ab \right)}^{2}}+2\left( ab \right)\left( bc \right)+{{\left( bc \right)}^{2}}-2a{{b}^{2}}c\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+2a{{b}^{2}}c+{{b}^{2}}{{c}^{2}}-2a{{b}^{2}}c\]
\[\begin{align}
& {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
& \therefore {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
\end{align}\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Using the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{\left( {{m}^{2}} \right)}^{2}}-2\left( {{m}^{2}} \right)\left( {{n}^{2}}m \right)+{{\left( {{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}} \\
& ={{m}^{4}}-2{{n}^{2}}{{m}^{3}}+{{n}^{4}}{{m}^{2}}+2{{n}^{2}}{{m}^{3}} \\
& ={{m}^{4}}+{{n}^{4}}{{m}^{2}} \\
& ={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
\end{align}\]
Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

