
Evaluate the following : -
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Answer
602.4k+ views
Hint: Use the formulae: -
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) \\
\end{align}\]
Complete step-by-step answer:
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
We know, \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
And \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}+{{\left( {{b}^{2}} \right)}^{2}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}=\left( {{a}^{4}}+{{b}^{4}} \right)-2{{a}^{2}}{{b}^{2}} \\
\end{align}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
Use the formulae to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=2x and b=5.
\[\begin{align}
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left[ {{\left( 2x \right)}^{2}}+2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right]-\left[ {{\left( 2x \right)}^{2}}-2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right] \\
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left( 4{{x}^{2}}+20x+25 \right)-\left( 4{{x}^{2}}-20x+25 \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =4{{x}^{2}}+20x+25-4{{x}^{2}}+20x-25 \\
& =20x+20x=40x \\
& \therefore {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=40x \\
\end{align}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
Use the formula to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=7m and b=8n.
\[\begin{align}
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left[ {{\left( 7m \right)}^{2}}+2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right]+\left[ {{\left( 7m \right)}^{2}}-2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right] \\
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left( 49{{m}^{2}}-112mn+64{{n}^{2}} \right)+\left( 49{{m}^{2}}+112mn+64{{n}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =49{{m}^{2}}-112mn+64{{n}^{2}}+49{{m}^{2}}+112mn+64{{n}^{2}} \\
& =98{{m}^{2}}+128{{n}^{2}} \\
& =2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
& \therefore {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
\end{align}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
We can use the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}} \\
& =\left[ {{\left( 4m \right)}^{2}}+2\left( 4m \right)\left( 5n \right)+{{\left( 5n \right)}^{2}} \right]+\left[ {{\left( 4n \right)}^{2}}+2\left( 4n \right)\left( 5m \right)+{{\left( 5m \right)}^{2}} \right] \\
& =\left( 16{{m}^{2}}+40mn+25{{n}^{2}} \right)+\left( 16{{n}^{2}}+40mn+25{{m}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =16{{m}^{2}}+40mn+25{{n}^{2}}+16{{n}^{2}}+40mn+25{{m}^{2}} \\
& =\left( 16{{m}^{2}}+25{{m}^{2}} \right)+\left( 40mn+40mn \right)+\left( 25{{n}^{2}}+16{{n}^{2}} \right) \\
& =41{{m}^{2}}+80mn+41{{n}^{2}} \\
& \therefore {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}=41{{m}^{2}}+80mn+41{{n}^{2}} \\
\end{align}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
We can use the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}= \\
& =\left[ {{\left( 2.5p \right)}^{2}}-2\left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \right]-\left[ {{\left( 1.5p \right)}^{2}}-2\left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \right] \\
& =\left( 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}} \right)-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& =6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =\left( 6.25-2.25 \right){{p}^{2}}+\left( 2.25-6.25 \right){{q}^{2}} \\
& =4{{p}^{2}}+\left( -4 \right){{q}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right)=4\left( p+q \right)\left( p-q \right) \\
& \therefore {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
Using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{\left( ab \right)}^{2}}+2\left( ab \right)\left( bc \right)+{{\left( bc \right)}^{2}}-2a{{b}^{2}}c\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+2a{{b}^{2}}c+{{b}^{2}}{{c}^{2}}-2a{{b}^{2}}c\]
\[\begin{align}
& {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
& \therefore {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
\end{align}\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Using the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{\left( {{m}^{2}} \right)}^{2}}-2\left( {{m}^{2}} \right)\left( {{n}^{2}}m \right)+{{\left( {{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}} \\
& ={{m}^{4}}-2{{n}^{2}}{{m}^{3}}+{{n}^{4}}{{m}^{2}}+2{{n}^{2}}{{m}^{3}} \\
& ={{m}^{4}}+{{n}^{4}}{{m}^{2}} \\
& ={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
\end{align}\]
Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) \\
\end{align}\]
Complete step-by-step answer:
(i) \[{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}\]
We know, \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
And \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{\left( {{a}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}}+{{\left( {{b}^{2}} \right)}^{2}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}={{a}^{4}}-2{{a}^{2}}{{b}^{2}}+{{b}^{4}} \\
& {{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}=\left( {{a}^{4}}+{{b}^{4}} \right)-2{{a}^{2}}{{b}^{2}} \\
\end{align}\]
(ii) \[{{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}\]
Use the formulae to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=2x and b=5.
\[\begin{align}
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left[ {{\left( 2x \right)}^{2}}+2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right]-\left[ {{\left( 2x \right)}^{2}}-2\times \left( 2x \right)\times 5+{{\left( 5 \right)}^{2}} \right] \\
& {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=\left( 4{{x}^{2}}+20x+25 \right)-\left( 4{{x}^{2}}-20x+25 \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =4{{x}^{2}}+20x+25-4{{x}^{2}}+20x-25 \\
& =20x+20x=40x \\
& \therefore {{\left( 2x+5 \right)}^{2}}-{{\left( 2x-5 \right)}^{2}}=40x \\
\end{align}\]
(iii) \[{{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}\]
Use the formula to get the required simplification,
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}\]
Here a=7m and b=8n.
\[\begin{align}
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left[ {{\left( 7m \right)}^{2}}+2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right]+\left[ {{\left( 7m \right)}^{2}}-2\times \left( 7m \right)\times \left( 8n \right)+{{\left( 8n \right)}^{2}} \right] \\
& {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=\left( 49{{m}^{2}}-112mn+64{{n}^{2}} \right)+\left( 49{{m}^{2}}+112mn+64{{n}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =49{{m}^{2}}-112mn+64{{n}^{2}}+49{{m}^{2}}+112mn+64{{n}^{2}} \\
& =98{{m}^{2}}+128{{n}^{2}} \\
& =2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
& \therefore {{\left( 7m-8n \right)}^{2}}+{{\left( 7m+8n \right)}^{2}}=2\left( 49{{m}^{2}}+64{{n}^{2}} \right) \\
\end{align}\]
(iv) \[{{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}\]
We can use the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}} \\
& =\left[ {{\left( 4m \right)}^{2}}+2\left( 4m \right)\left( 5n \right)+{{\left( 5n \right)}^{2}} \right]+\left[ {{\left( 4n \right)}^{2}}+2\left( 4n \right)\left( 5m \right)+{{\left( 5m \right)}^{2}} \right] \\
& =\left( 16{{m}^{2}}+40mn+25{{n}^{2}} \right)+\left( 16{{n}^{2}}+40mn+25{{m}^{2}} \right) \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =16{{m}^{2}}+40mn+25{{n}^{2}}+16{{n}^{2}}+40mn+25{{m}^{2}} \\
& =\left( 16{{m}^{2}}+25{{m}^{2}} \right)+\left( 40mn+40mn \right)+\left( 25{{n}^{2}}+16{{n}^{2}} \right) \\
& =41{{m}^{2}}+80mn+41{{n}^{2}} \\
& \therefore {{\left( 4m+5n \right)}^{2}}+{{\left( 4n+5m \right)}^{2}}=41{{m}^{2}}+80mn+41{{n}^{2}} \\
\end{align}\]
(v) \[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
We can use the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}= \\
& =\left[ {{\left( 2.5p \right)}^{2}}-2\left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \right]-\left[ {{\left( 1.5p \right)}^{2}}-2\left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \right] \\
& =\left( 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}} \right)-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& =6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& =\left( 6.25-2.25 \right){{p}^{2}}+\left( 2.25-6.25 \right){{q}^{2}} \\
& =4{{p}^{2}}+\left( -4 \right){{q}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right)=4\left( p+q \right)\left( p-q \right) \\
& \therefore {{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}=4\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
(vi) \[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c\]
Using the formula, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{\left( ab \right)}^{2}}+2\left( ab \right)\left( bc \right)+{{\left( bc \right)}^{2}}-2a{{b}^{2}}c\]
\[{{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+2a{{b}^{2}}c+{{b}^{2}}{{c}^{2}}-2a{{b}^{2}}c\]
\[\begin{align}
& {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
& \therefore {{\left( ab+bc \right)}^{2}}-2a{{b}^{2}}c={{b}^{2}}\left( {{a}^{2}}+{{c}^{2}} \right) \\
\end{align}\]
(vii) \[{{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}\]
Using the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\begin{align}
& {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{\left( {{m}^{2}} \right)}^{2}}-2\left( {{m}^{2}} \right)\left( {{n}^{2}}m \right)+{{\left( {{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}} \\
& ={{m}^{4}}-2{{n}^{2}}{{m}^{3}}+{{n}^{4}}{{m}^{2}}+2{{n}^{2}}{{m}^{3}} \\
& ={{m}^{4}}+{{n}^{4}}{{m}^{2}} \\
& ={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
& \therefore {{\left( {{m}^{2}}-{{n}^{2}}m \right)}^{2}}+2{{m}^{3}}{{n}^{2}}={{m}^{2}}\left( {{m}^{2}}+{{n}^{4}} \right) \\
\end{align}\]
Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.
Recently Updated Pages
Which is the correct sequence?

Porus was the ruler of the territory between the rivers?

The first discourse of Buddha at Sarnath is called?

Who was the father of Mahavira?

The rock-cut temples at Pattadakal were built by?

Who was the only Hindu king who ruled Delhi throne?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

