Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Evaluate the following : -
(i) (a2b2)2
(ii) (2x+5)2(2x5)2
(iii) (7m8n)2+(7m+8n)2
(iv) (4m+5n)2+(4n+5m)2
(v) (2.5p1.5q)2(1.5p2.5q)2
(vi) (ab+bc)22ab2c
(vii) (m2n2m)2+2m3n2

Answer
VerifiedVerified
528k+ views
like imagedislike image
Hint: Use the formulae: -
(a+b)2=a2+2ab+b2(ab)2=a22ab+b2(a2b2)=(ab)(a+b)

Complete step-by-step answer:
(i) (a2b2)2
We know, (a2b2)=(ab)(a+b)
And (ab)2=a22ab+b2
(a2b2)2=(a2)22a2b2+(b2)2(a2b2)2=a42a2b2+b4(a2b2)2=(a4+b4)2a2b2
(ii) (2x+5)2(2x5)2
Use the formulae to get the required simplification,
(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
Here a=2x and b=5.
(2x+5)2(2x5)2=[(2x)2+2×(2x)×5+(5)2][(2x)22×(2x)×5+(5)2](2x+5)2(2x5)2=(4x2+20x+25)(4x220x+25)
Opening the bracket and simplifying it,
=4x2+20x+254x2+20x25=20x+20x=40x(2x+5)2(2x5)2=40x
(iii) (7m8n)2+(7m+8n)2
Use the formula to get the required simplification,
(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
Here a=7m and b=8n.
(7m8n)2+(7m+8n)2=[(7m)2+2×(7m)×(8n)+(8n)2]+[(7m)22×(7m)×(8n)+(8n)2](7m8n)2+(7m+8n)2=(49m2112mn+64n2)+(49m2+112mn+64n2)
Opening the bracket and simplifying it,
=49m2112mn+64n2+49m2+112mn+64n2=98m2+128n2=2(49m2+64n2)(7m8n)2+(7m+8n)2=2(49m2+64n2)
(iv) (4m+5n)2+(4n+5m)2
We can use the formula, (a+b)2=a2+2ab+b2
(4m+5n)2+(4n+5m)2=[(4m)2+2(4m)(5n)+(5n)2]+[(4n)2+2(4n)(5m)+(5m)2]=(16m2+40mn+25n2)+(16n2+40mn+25m2)
Opening the bracket and simplifying it,
=16m2+40mn+25n2+16n2+40mn+25m2=(16m2+25m2)+(40mn+40mn)+(25n2+16n2)=41m2+80mn+41n2(4m+5n)2+(4n+5m)2=41m2+80mn+41n2
(v) (2.5p1.5q)2(1.5p2.5q)2
We can use the formula, (ab)2=a22ab+b2
(2.5p1.5q)2(1.5p2.5q)2==[(2.5p)22(2.5p)(1.5q)+(1.5q)2][(1.5p)22(1.5p)(2.5q)+(2.5q)2]=(6.25p27.5pq+2.25q2)(2.25p27.5pq+6.25q2)=6.25p27.5pq+2.25q22.25p2+7.5pq6.25q2
Opening the bracket and simplifying it,
=(6.252.25)p2+(2.256.25)q2=4p2+(4)q2=4(p2q2)=4(p+q)(pq)(2.5p1.5q)2(1.5p2.5q)2=4(p2q2)
(vi) (ab+bc)22ab2c
Using the formula, (a+b)2=a2+2ab+b2
(ab+bc)22ab2c=(ab)2+2(ab)(bc)+(bc)22ab2c
(ab+bc)22ab2c=a2b2+2ab2c+b2c22ab2c
(ab+bc)22ab2c=a2b2+b2c2=b2(a2+c2)(ab+bc)22ab2c=b2(a2+c2)
(vii) (m2n2m)2+2m3n2
Using the formula, (ab)2=a22ab+b2
(m2n2m)2+2m3n2=(m2)22(m2)(n2m)+(n2m)2+2m3n2=m42n2m3+n4m2+2n2m3=m4+n4m2=m2(m2+n4)(m2n2m)2+2m3n2=m2(m2+n4)

Note: Be cautious while simplifying it so you don’t misplace the sign and also the variables. Misplacing them might change the entire simplification.