
Evaluate the following function $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ .
Answer
586.2k+ views
- Hint:For solving this question, we will use the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ . After that, we will transform the terms in the given limit so, that we can apply the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ directly. Then, we will solve further to get the final answer.
Complete step-by-step solution -
Given:
We have to find the value of the limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ .
Now, before we proceed we should know the following formula:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}...................\left( 1 \right)$
Now, we will solve the following limit:
$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$
Now, we will write $x-a=\left( x+2 \right)-\left( a+2 \right)$ in the above limit. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)}.................\left( 2 \right) \\
\end{align}$
Now, let $x+2=y$ . Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\left( x+2 \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,y=a+2 \\
\end{align}$
Now, from the above result, we conclude that as the value of $x$ approaches to $a$ , then the value of $y$ approaches to $a+2$ . So, we can write $\left( x\to a \right)=\left( y\to a+2 \right)$ and $\left( x+2 \right)=y$ in the equation (2). Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
\end{align}$
Now, let $a+2=b$ so, we will write $a+2=b$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
\end{align}$
Now, we will use the formula from the equation (1) with the value of $n=\dfrac{5}{2}$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( b \right)}^{\left( \dfrac{5}{2}-1 \right)}} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
\end{align}$
Now, as per our assumption $a+2=b$ so, we will write $b=a+2$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} \\
\end{align}$
Now, from the above result, we conclude that the value of limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ will be equal to $\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Thus, $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Note: Here, the student should first understand the given limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ and then proceed in the right direction to get the correct answer quickly. And we should proceed with the stepwise approach and first, we should try to transform the terms in the given limit so, that we can apply the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ directly and then solve further without any mistake. Moreover, for the objective problem, we can easily write the result directly by analysing the terms in the given limit.
Complete step-by-step solution -
Given:
We have to find the value of the limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ .
Now, before we proceed we should know the following formula:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}...................\left( 1 \right)$
Now, we will solve the following limit:
$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$
Now, we will write $x-a=\left( x+2 \right)-\left( a+2 \right)$ in the above limit. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)}.................\left( 2 \right) \\
\end{align}$
Now, let $x+2=y$ . Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\left( x+2 \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,y=a+2 \\
\end{align}$
Now, from the above result, we conclude that as the value of $x$ approaches to $a$ , then the value of $y$ approaches to $a+2$ . So, we can write $\left( x\to a \right)=\left( y\to a+2 \right)$ and $\left( x+2 \right)=y$ in the equation (2). Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
\end{align}$
Now, let $a+2=b$ so, we will write $a+2=b$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
\end{align}$
Now, we will use the formula from the equation (1) with the value of $n=\dfrac{5}{2}$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( b \right)}^{\left( \dfrac{5}{2}-1 \right)}} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
\end{align}$
Now, as per our assumption $a+2=b$ so, we will write $b=a+2$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} \\
\end{align}$
Now, from the above result, we conclude that the value of limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ will be equal to $\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Thus, $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Note: Here, the student should first understand the given limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ and then proceed in the right direction to get the correct answer quickly. And we should proceed with the stepwise approach and first, we should try to transform the terms in the given limit so, that we can apply the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ directly and then solve further without any mistake. Moreover, for the objective problem, we can easily write the result directly by analysing the terms in the given limit.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

