
Evaluate the following function $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ .
Answer
579k+ views
- Hint:For solving this question, we will use the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ . After that, we will transform the terms in the given limit so, that we can apply the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ directly. Then, we will solve further to get the final answer.
Complete step-by-step solution -
Given:
We have to find the value of the limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ .
Now, before we proceed we should know the following formula:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}...................\left( 1 \right)$
Now, we will solve the following limit:
$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$
Now, we will write $x-a=\left( x+2 \right)-\left( a+2 \right)$ in the above limit. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)}.................\left( 2 \right) \\
\end{align}$
Now, let $x+2=y$ . Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\left( x+2 \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,y=a+2 \\
\end{align}$
Now, from the above result, we conclude that as the value of $x$ approaches to $a$ , then the value of $y$ approaches to $a+2$ . So, we can write $\left( x\to a \right)=\left( y\to a+2 \right)$ and $\left( x+2 \right)=y$ in the equation (2). Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
\end{align}$
Now, let $a+2=b$ so, we will write $a+2=b$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
\end{align}$
Now, we will use the formula from the equation (1) with the value of $n=\dfrac{5}{2}$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( b \right)}^{\left( \dfrac{5}{2}-1 \right)}} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
\end{align}$
Now, as per our assumption $a+2=b$ so, we will write $b=a+2$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} \\
\end{align}$
Now, from the above result, we conclude that the value of limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ will be equal to $\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Thus, $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Note: Here, the student should first understand the given limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ and then proceed in the right direction to get the correct answer quickly. And we should proceed with the stepwise approach and first, we should try to transform the terms in the given limit so, that we can apply the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ directly and then solve further without any mistake. Moreover, for the objective problem, we can easily write the result directly by analysing the terms in the given limit.
Complete step-by-step solution -
Given:
We have to find the value of the limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ .
Now, before we proceed we should know the following formula:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}...................\left( 1 \right)$
Now, we will solve the following limit:
$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$
Now, we will write $x-a=\left( x+2 \right)-\left( a+2 \right)$ in the above limit. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)}.................\left( 2 \right) \\
\end{align}$
Now, let $x+2=y$ . Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\left( x+2 \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,y=a+2 \\
\end{align}$
Now, from the above result, we conclude that as the value of $x$ approaches to $a$ , then the value of $y$ approaches to $a+2$ . So, we can write $\left( x\to a \right)=\left( y\to a+2 \right)$ and $\left( x+2 \right)=y$ in the equation (2). Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( x+2 \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{\left( x+2 \right)-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
\end{align}$
Now, let $a+2=b$ so, we will write $a+2=b$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to a+2}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-\left( a+2 \right)}{y-\left( a+2 \right)} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
\end{align}$
Now, we will use the formula from the equation (1) with the value of $n=\dfrac{5}{2}$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\underset{y\to b}{\mathop{\lim }}\,\dfrac{{{y}^{\dfrac{5}{2}}}-b}{y-b} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( b \right)}^{\left( \dfrac{5}{2}-1 \right)}} \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
\end{align}$
Now, as per our assumption $a+2=b$ so, we will write $b=a+2$ in the above equation. Then,
$\begin{align}
& \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}\left( {{b}^{\dfrac{3}{2}}} \right) \\
& \Rightarrow \underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}} \\
\end{align}$
Now, from the above result, we conclude that the value of limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ will be equal to $\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Thus, $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}=\dfrac{5}{2}{{\left( a+2 \right)}^{\dfrac{3}{2}}}$ .
Note: Here, the student should first understand the given limit $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{\left( 2+x \right)}^{\dfrac{5}{2}}}-{{\left( a+2 \right)}^{\dfrac{5}{2}}}}{x-a}$ and then proceed in the right direction to get the correct answer quickly. And we should proceed with the stepwise approach and first, we should try to transform the terms in the given limit so, that we can apply the formula $\underset{x\to t}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{t}^{n}}}{x-t}=n{{t}^{n-1}}$ directly and then solve further without any mistake. Moreover, for the objective problem, we can easily write the result directly by analysing the terms in the given limit.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

