
Evaluate the following expressions.
(i) $ \left( {10x - 25} \right) \div 5 $
(ii) $ 10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) $
(iii) $ 96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) $
Answer
581.1k+ views
Hint: When the dividend has two or more terms which are joined by multiplication then multiply all the terms with one another and convert the dividend into a single term and take out what is similar in the elements of the dividend. Do the same with the divisor too. If the divisor is a factor of the dividend, then the remainder when their division happens will be zero.
Complete step-by-step answer:
We are given three expressions. Each expression has a dividend and a divisor. We have to find their divisions.
(i) $ \left( {10x - 25} \right) \div 5 $
The dividend is $ \left( {10x - 25} \right) $ and the divisor is the constant 5.
On factoring the dividend, we get
$
\left( {10x - 25} \right) = \left( {5 \times 2} \right)x - \left( {5 \times 5} \right) \\
\Rightarrow \left( {10x - 25} \right) = 5\left( {2x - 5} \right) \\
$
As we can see, the dividend has a factor 5 which is our divisor, so the remainder will be zero
Then the quotient is $ \dfrac{{\left( {10x - 25} \right)}}{5} = \dfrac{{5\left( {2x - 5} \right)}}{5} = 2x - 5 $
(ii) $ 10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) $
Expand the dividend first.
$
\Rightarrow 10y\left( {6y + 21} \right) \\
= \left( {10y \times 6y} \right) + \left( {10y + 21} \right) \\
= 60{y^2} + 210y \\
= 6y\left( {10y + 35} \right) \\
$
As we can see, the dividend has a factor $ \left( {10y + 35} \right) $ which is our divisor, so the remainder will be zero.
The degree of the dividend is 2 and the degree of the divisor is 1, so the quotient will have a degree $ 2 - 1 = 1 $
On dividing the dividend with the divisor the quotient will be
$\Rightarrow \dfrac{{10y\left( {6y + 21} \right)}}{{5\left( {2y + 7} \right)}} = \dfrac{{60{y^2} + 210y}}{{10y + 35}} = \dfrac{{6y\left( {10y + 35} \right)}}{{10y + 35}} = 6y $
(iii) $ 96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) $
Factorize the dividend
$
\Rightarrow 96abc\left( {3a - 12} \right)\left( {5b - 30} \right) = 96abc\left[ {3\left( {a - 4} \right)} \right]\left[ {5\left( {b - 6} \right)} \right] \\
= 96 \times 3 \times 5\left( {abc} \right)\left( {a - 4} \right)\left( {b - 6} \right) \\
= 144 \times 10\left( {abc} \right)\left( {a - 4} \right)\left( {b - 6} \right) \\
$
As we can see, the dividend has a factor $ 144\left( {a - 4} \right)\left( {b - 6} \right) $ which is our divisor, so the remainder will be zero.
Then the quotient is
$\Rightarrow \dfrac{{96abc\left( {3a - 12} \right)\left( {5b - 30} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}} = \dfrac{{144 \times 10\left( {abc} \right)\left( {a - 4} \right)\left( {b - 6} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}} = \dfrac{{144\left( {a - 4} \right)\left( {b - 6} \right) \times 10\left( {abc} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}} = 10abc $
Note: When the dividend is in terms of a variable and the divisor is also in terms of the same variable and the divisor is a factor of dividend, then the quotient will be a constant only when the degree of dividend and divisor is same. When their degrees differ then the degree of the quotient will be the difference of their degrees.
Complete step-by-step answer:
We are given three expressions. Each expression has a dividend and a divisor. We have to find their divisions.
(i) $ \left( {10x - 25} \right) \div 5 $
The dividend is $ \left( {10x - 25} \right) $ and the divisor is the constant 5.
On factoring the dividend, we get
$
\left( {10x - 25} \right) = \left( {5 \times 2} \right)x - \left( {5 \times 5} \right) \\
\Rightarrow \left( {10x - 25} \right) = 5\left( {2x - 5} \right) \\
$
As we can see, the dividend has a factor 5 which is our divisor, so the remainder will be zero
Then the quotient is $ \dfrac{{\left( {10x - 25} \right)}}{5} = \dfrac{{5\left( {2x - 5} \right)}}{5} = 2x - 5 $
(ii) $ 10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) $
Expand the dividend first.
$
\Rightarrow 10y\left( {6y + 21} \right) \\
= \left( {10y \times 6y} \right) + \left( {10y + 21} \right) \\
= 60{y^2} + 210y \\
= 6y\left( {10y + 35} \right) \\
$
As we can see, the dividend has a factor $ \left( {10y + 35} \right) $ which is our divisor, so the remainder will be zero.
The degree of the dividend is 2 and the degree of the divisor is 1, so the quotient will have a degree $ 2 - 1 = 1 $
On dividing the dividend with the divisor the quotient will be
$\Rightarrow \dfrac{{10y\left( {6y + 21} \right)}}{{5\left( {2y + 7} \right)}} = \dfrac{{60{y^2} + 210y}}{{10y + 35}} = \dfrac{{6y\left( {10y + 35} \right)}}{{10y + 35}} = 6y $
(iii) $ 96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) $
Factorize the dividend
$
\Rightarrow 96abc\left( {3a - 12} \right)\left( {5b - 30} \right) = 96abc\left[ {3\left( {a - 4} \right)} \right]\left[ {5\left( {b - 6} \right)} \right] \\
= 96 \times 3 \times 5\left( {abc} \right)\left( {a - 4} \right)\left( {b - 6} \right) \\
= 144 \times 10\left( {abc} \right)\left( {a - 4} \right)\left( {b - 6} \right) \\
$
As we can see, the dividend has a factor $ 144\left( {a - 4} \right)\left( {b - 6} \right) $ which is our divisor, so the remainder will be zero.
Then the quotient is
$\Rightarrow \dfrac{{96abc\left( {3a - 12} \right)\left( {5b - 30} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}} = \dfrac{{144 \times 10\left( {abc} \right)\left( {a - 4} \right)\left( {b - 6} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}} = \dfrac{{144\left( {a - 4} \right)\left( {b - 6} \right) \times 10\left( {abc} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}} = 10abc $
Note: When the dividend is in terms of a variable and the divisor is also in terms of the same variable and the divisor is a factor of dividend, then the quotient will be a constant only when the degree of dividend and divisor is same. When their degrees differ then the degree of the quotient will be the difference of their degrees.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


