
Evaluate the following expression:
$\left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)$.
Answer
617.4k+ views
Hint: Here Expression is given in form of ( a - b )( a + b ) so use the formula \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\] where $a=\sqrt{11}\ \And \ b=\sqrt{7}$.
Complete step-by-step answer:
We know that \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
In the expression, $\left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)$, $a=\sqrt{11}\ \And \ b=\sqrt{7}$.
\[\begin{align}
& \therefore \left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)={{\left( \sqrt{11} \right)}^{2}}-{{\left( \sqrt{7} \right)}^{2}} \\
& =\sqrt{11}.\sqrt{11}-\sqrt{7}.\sqrt{7} \\
& =11-7 \\
& =4 \\
\end{align}\]
Therefore, the answer is 4.
Note: We can solve this expression by opening the brackets( using BODMAS rule ) as well.
$\begin{align}
& \left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)=\sqrt{11}\left( \sqrt{11}+\sqrt{7} \right)-\sqrt{7}\left( \sqrt{11}+\sqrt{7} \right) \\
& =\sqrt{11}\times \sqrt{11}+\sqrt{11}\times \sqrt{7}-\sqrt{7}\times \sqrt{11}-\sqrt{7}\times \sqrt{7} \\
& =11+\sqrt{77}-\sqrt{77}-7 \\
& =11-7 \\
& =4 \\
\end{align}$
Complete step-by-step answer:
We know that \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
In the expression, $\left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)$, $a=\sqrt{11}\ \And \ b=\sqrt{7}$.
\[\begin{align}
& \therefore \left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)={{\left( \sqrt{11} \right)}^{2}}-{{\left( \sqrt{7} \right)}^{2}} \\
& =\sqrt{11}.\sqrt{11}-\sqrt{7}.\sqrt{7} \\
& =11-7 \\
& =4 \\
\end{align}\]
Therefore, the answer is 4.
Note: We can solve this expression by opening the brackets( using BODMAS rule ) as well.
$\begin{align}
& \left( \sqrt{11}-\sqrt{7} \right)\left( \sqrt{11}+\sqrt{7} \right)=\sqrt{11}\left( \sqrt{11}+\sqrt{7} \right)-\sqrt{7}\left( \sqrt{11}+\sqrt{7} \right) \\
& =\sqrt{11}\times \sqrt{11}+\sqrt{11}\times \sqrt{7}-\sqrt{7}\times \sqrt{11}-\sqrt{7}\times \sqrt{7} \\
& =11+\sqrt{77}-\sqrt{77}-7 \\
& =11-7 \\
& =4 \\
\end{align}$
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


