
Evaluate the following expression:
\[{{\left( \dfrac{1+\cos \dfrac{\pi }{8}-i\sin \dfrac{\pi }{8}}{1+\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}} \right)}^{8}}=\]
(a) \[1\]
(b) \[-1\]
(c) \[2\]
(d) \[\dfrac{1}{2}\]
Answer
582.3k+ views
- Hint: First of all, eliminate 1 from numerator and denominator by using half angle formulas that are \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] and \[\sin 2\theta =2\sin \theta \cos \theta \] and then use \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \].
Complete step-by-step solution -
We have to find the value of
\[A={{\left( \dfrac{1+\cos \dfrac{\pi }{8}-i\sin \dfrac{\pi }{8}}{1+\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}} \right)}^{8}}....\left( i \right)\]
We know that, \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] when \[2\theta =\dfrac{\pi }{8}\], then \[\theta =\dfrac{\pi }{16}\].
Therefore, \[\cos \dfrac{\pi }{8}=2{{\cos }^{2}}\dfrac{\pi }{16}-1\]
Also, \[\sin 2\theta =2\sin \theta \cos \theta \]
\[\sin \dfrac{\pi }{8}=2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16}\]
Putting the values of \[\cos \dfrac{\pi }{8}\] and \[\sin \dfrac{\pi }{8}\]in equation (i), we get,
\[A={{\left( \dfrac{1+2{{\cos }^{2}}\dfrac{\pi }{16}-1-i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)}{1+2{{\cos }^{2}}\dfrac{\pi }{16}-1+i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)} \right)}^{8}}\]
\[\Rightarrow A={{\left( \dfrac{2{{\cos }^{2}}\dfrac{\pi }{16}-i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)}{2{{\cos }^{2}}\dfrac{\pi }{16}+i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)} \right)}^{8}}\]
Taking \[2\cos \dfrac{\pi }{16}\] common from numerator and denominator and cancelling it, we get
\[A={{\left( \dfrac{\cos \dfrac{\pi }{16}-i\sin \dfrac{\pi }{16}}{\cos \dfrac{\pi }{16}+i\sin \dfrac{\pi }{16}} \right)}^{8}}...\left( ii \right)\]
We know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta ....\left( iii \right)\]
Therefore, \[{{e}^{i\dfrac{\pi }{16}}}=\cos \dfrac{\pi }{16}+i\sin \dfrac{\pi }{16}\]
\[{{e}^{i\left( -\dfrac{\pi }{16} \right)}}=\cos \left( -\dfrac{\pi }{16} \right)+i\sin \left( -\dfrac{\pi }{16} \right)\]
As \[\sin \left( -\theta \right)=-\sin \theta \] and \[\cos \left( -\theta \right)=\cos \theta \]
Therefore, \[{{e}^{-i\dfrac{\pi }{6}}}=\cos \left( \dfrac{\pi }{16} \right)-i\sin \left( \dfrac{\pi }{16} \right)\]
Putting these values in equation (ii), we get
\[A={{\left[ \dfrac{{{e}^{-i\dfrac{\pi }{16}}}}{{{e}^{i\dfrac{\pi }{16}}}} \right]}^{8}}\]
We know that, \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]
Therefore, \[A={{\left[ {{e}^{-\dfrac{i\pi }{16}-\dfrac{i\pi }{16}}} \right]}^{8}}\]
\[\Rightarrow A={{\left[ {{e}^{-\dfrac{i\pi }{8}}} \right]}^{8}}\]
As \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m.n}}\]
We get, \[A=\left[ {{e}^{\dfrac{-i\pi }{8}.8}} \right]={{e}^{-i\pi }}\]
From equation (iii),
\[A={{e}^{-i\pi }}=\cos \left( -\pi \right)+i\sin \left( -\pi \right)\]
As, \[\cos \left( -\pi \right)=\cos \left( \pi \right)=-1\] and \[\sin \left( -\pi \right)=-\sin \pi =0\]
We get, \[A={{e}^{-i\pi }}=-1\]
Therefore, option (b) is the correct answer.
Note: In this question, students must take the utmost care of angles and their transformation. Students often make this mistake of converting \[\dfrac{\pi }{8}\] into \[\dfrac{\pi }{4}\] instead of \[\dfrac{\pi }{16}.\] So this must be taken care of. Also always try to reduce the angles into sine and cosine of familiar angles like \[\pi ,\dfrac{\pi }{2},\dfrac{\pi }{4},etc.\]
Complete step-by-step solution -
We have to find the value of
\[A={{\left( \dfrac{1+\cos \dfrac{\pi }{8}-i\sin \dfrac{\pi }{8}}{1+\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}} \right)}^{8}}....\left( i \right)\]
We know that, \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] when \[2\theta =\dfrac{\pi }{8}\], then \[\theta =\dfrac{\pi }{16}\].
Therefore, \[\cos \dfrac{\pi }{8}=2{{\cos }^{2}}\dfrac{\pi }{16}-1\]
Also, \[\sin 2\theta =2\sin \theta \cos \theta \]
\[\sin \dfrac{\pi }{8}=2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16}\]
Putting the values of \[\cos \dfrac{\pi }{8}\] and \[\sin \dfrac{\pi }{8}\]in equation (i), we get,
\[A={{\left( \dfrac{1+2{{\cos }^{2}}\dfrac{\pi }{16}-1-i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)}{1+2{{\cos }^{2}}\dfrac{\pi }{16}-1+i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)} \right)}^{8}}\]
\[\Rightarrow A={{\left( \dfrac{2{{\cos }^{2}}\dfrac{\pi }{16}-i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)}{2{{\cos }^{2}}\dfrac{\pi }{16}+i\left( 2\sin \dfrac{\pi }{16}\cos \dfrac{\pi }{16} \right)} \right)}^{8}}\]
Taking \[2\cos \dfrac{\pi }{16}\] common from numerator and denominator and cancelling it, we get
\[A={{\left( \dfrac{\cos \dfrac{\pi }{16}-i\sin \dfrac{\pi }{16}}{\cos \dfrac{\pi }{16}+i\sin \dfrac{\pi }{16}} \right)}^{8}}...\left( ii \right)\]
We know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta ....\left( iii \right)\]
Therefore, \[{{e}^{i\dfrac{\pi }{16}}}=\cos \dfrac{\pi }{16}+i\sin \dfrac{\pi }{16}\]
\[{{e}^{i\left( -\dfrac{\pi }{16} \right)}}=\cos \left( -\dfrac{\pi }{16} \right)+i\sin \left( -\dfrac{\pi }{16} \right)\]
As \[\sin \left( -\theta \right)=-\sin \theta \] and \[\cos \left( -\theta \right)=\cos \theta \]
Therefore, \[{{e}^{-i\dfrac{\pi }{6}}}=\cos \left( \dfrac{\pi }{16} \right)-i\sin \left( \dfrac{\pi }{16} \right)\]
Putting these values in equation (ii), we get
\[A={{\left[ \dfrac{{{e}^{-i\dfrac{\pi }{16}}}}{{{e}^{i\dfrac{\pi }{16}}}} \right]}^{8}}\]
We know that, \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]
Therefore, \[A={{\left[ {{e}^{-\dfrac{i\pi }{16}-\dfrac{i\pi }{16}}} \right]}^{8}}\]
\[\Rightarrow A={{\left[ {{e}^{-\dfrac{i\pi }{8}}} \right]}^{8}}\]
As \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m.n}}\]
We get, \[A=\left[ {{e}^{\dfrac{-i\pi }{8}.8}} \right]={{e}^{-i\pi }}\]
From equation (iii),
\[A={{e}^{-i\pi }}=\cos \left( -\pi \right)+i\sin \left( -\pi \right)\]
As, \[\cos \left( -\pi \right)=\cos \left( \pi \right)=-1\] and \[\sin \left( -\pi \right)=-\sin \pi =0\]
We get, \[A={{e}^{-i\pi }}=-1\]
Therefore, option (b) is the correct answer.
Note: In this question, students must take the utmost care of angles and their transformation. Students often make this mistake of converting \[\dfrac{\pi }{8}\] into \[\dfrac{\pi }{4}\] instead of \[\dfrac{\pi }{16}.\] So this must be taken care of. Also always try to reduce the angles into sine and cosine of familiar angles like \[\pi ,\dfrac{\pi }{2},\dfrac{\pi }{4},etc.\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

