
Evaluate the following, expressing your answer in Cartesian form $a+ib$:
(a) $\left( 1+2i \right){{(4-6i)}^{2}}$
Answer
612.6k+ views
Hint: Various properties of complex numbers are used to solve this problem. The properties used in this problem are:
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete step-by-step answer:
A complex number $z$ has two parts. A real part and an imaginary part. If $z=x+iy$ is a complex number. Then ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=(x+iy)(x+iy) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}+ixy+ixy+{{i}^{2}}{{y}^{2}}) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}-{{y}^{2}}+i2xy) \\
& \Rightarrow {{z}^{2}}={{x}^{2}}-{{y}^{2}}+i2xy \\
\end{align}$
This means that the real part of ${{z}^{2}}$ is ${{x}^{2}}-{{y}^{2}}$ and the imaginary part of ${{z}^{2}}$ is $2xy$.
If ${{z}_{1}}=a+ib$and ${{z}_{2}}=c+id$ are two complex numbers then multiplication of ${{z}_{1}}$ and ${{z}_{2}}$ is denoted by ${{z}_{1}}{{z}_{2}}$.
$\begin{align}
& \Rightarrow {{z}_{1}}{{z}_{2}}=(a+ib)(c+id) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac+iad+ibc+{{i}^{2}}bd) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac-bd+iad+ibc) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=ac-bd+i(ad+bc) \\
\end{align}$
This means that the real part of ${{z}_{1}}{{z}_{2}}$ is $ac-bd$ and the imaginary part of ${{z}_{1}}{{z}_{2}}$ is $ad+cb$. We will be using the above properties of complex numbers to find the answer.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here, we have the expression,
$\Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}$.
First, we will evaluate ${{\left( 4-6i \right)}^{2}}$. For this we have,
\[\begin{align}
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( 4-6i \right)\left( 4-6i \right) \\
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( {{4}^{2}}-2\times 4\times 6i+{{\left( 6i \right)}^{2}} \right) \\
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( 16-48i+36{{i}^{2}} \right)..........(iii) \\
\end{align}\]
In equation (iii) we have ${{i}^{2}}$, and we know ${{i}^{2}}=-1$ from equation (ii). Substituting this in equation (iii) we get,
$\begin{align}
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( 16-36-48i \right) \\
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( -20-48i \right)..........(iv) \\
\end{align}$
Now, substituting equation (iv) in the expression $\left( 1+2i \right){{\left( 4-6i \right)}^{2}}$we get,
$\Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=\left( 1+2i \right)\left( -20-48i \right)........(v)$
Equation (v) can be again simplified as,
$\begin{align}
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( 1+2i \right)\left( -5-12i \right) \\
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( -5-12i-10i-24{{i}^{2}} \right)......(vi) \\
\end{align}$
In equation (vi) we have ${{i}^{2}}$, and we know ${{i}^{2}}=-1$ from equation (ii). Substituting this in equation (vi) we get,
\[\begin{align}
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( -5-12i-10i+24 \right) \\
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( 19-22i \right) \\
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=76-88i..........(vii) \\
\end{align}\]
From equation (vii) we get the cartesian form of the expression $\left( 1+2i \right){{\left( 4-6i \right)}^{2}}$.
Hence, the correct answer is $76-88i$.
Note: In this problem we can also find the value ${{z}^{2}}$using the direct formula${{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy$.
Where, $z=x+iy$. In this question, \[z=4-6i\]
Directly substituting this we get,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy \\
& \Rightarrow {{z}^{2}}=\left( {{\left( 4 \right)}^{2}}-{{\left( -6 \right)}^{2}} \right)+i\left( 2\times -6\times 4 \right) \\
& \Rightarrow {{z}^{2}}=(16-36)+i\left( -48 \right) \\
& \Rightarrow {{z}^{2}}=-20-48i. \\
\end{align}$
And after this $\left( 1+2i \right){{\left( 4-6i \right)}^{2}}$can be also found using the direct formula,$pq=(ac-bd)+i(ad+bc)$.
Here,\[p=1+2i\],this implies \[a=1,b=2\]. Similarly, \[q=-20-48i\] implies \[c=-20,d=-48\].
Directly substituting this we get,
\[\begin{align}
& \Rightarrow pq=(ac-bd)+i(ad+bc) \\
& \Rightarrow pq=\left( \left( 1\times -20 \right)-\left( 2\times -48 \right) \right)+i\left( \left( 1\times -48 \right)+\left( 2\times -20 \right) \right) \\
& \Rightarrow pq=\left( -20+96 \right)+i\left( -48-40 \right) \\
& \Rightarrow pq=76-88i. \\
\end{align}\]
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete step-by-step answer:
A complex number $z$ has two parts. A real part and an imaginary part. If $z=x+iy$ is a complex number. Then ${{z}^{2}}$ is represented as,
$\begin{align}
& \Rightarrow {{z}^{2}}=(x+iy)(x+iy) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}+ixy+ixy+{{i}^{2}}{{y}^{2}}) \\
& \Rightarrow {{z}^{2}}=({{x}^{2}}-{{y}^{2}}+i2xy) \\
& \Rightarrow {{z}^{2}}={{x}^{2}}-{{y}^{2}}+i2xy \\
\end{align}$
This means that the real part of ${{z}^{2}}$ is ${{x}^{2}}-{{y}^{2}}$ and the imaginary part of ${{z}^{2}}$ is $2xy$.
If ${{z}_{1}}=a+ib$and ${{z}_{2}}=c+id$ are two complex numbers then multiplication of ${{z}_{1}}$ and ${{z}_{2}}$ is denoted by ${{z}_{1}}{{z}_{2}}$.
$\begin{align}
& \Rightarrow {{z}_{1}}{{z}_{2}}=(a+ib)(c+id) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac+iad+ibc+{{i}^{2}}bd) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac-bd+iad+ibc) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=ac-bd+i(ad+bc) \\
\end{align}$
This means that the real part of ${{z}_{1}}{{z}_{2}}$ is $ac-bd$ and the imaginary part of ${{z}_{1}}{{z}_{2}}$ is $ad+cb$. We will be using the above properties of complex numbers to find the answer.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here, we have the expression,
$\Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}$.
First, we will evaluate ${{\left( 4-6i \right)}^{2}}$. For this we have,
\[\begin{align}
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( 4-6i \right)\left( 4-6i \right) \\
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( {{4}^{2}}-2\times 4\times 6i+{{\left( 6i \right)}^{2}} \right) \\
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( 16-48i+36{{i}^{2}} \right)..........(iii) \\
\end{align}\]
In equation (iii) we have ${{i}^{2}}$, and we know ${{i}^{2}}=-1$ from equation (ii). Substituting this in equation (iii) we get,
$\begin{align}
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( 16-36-48i \right) \\
& \Rightarrow {{\left( 4-6i \right)}^{2}}=\left( -20-48i \right)..........(iv) \\
\end{align}$
Now, substituting equation (iv) in the expression $\left( 1+2i \right){{\left( 4-6i \right)}^{2}}$we get,
$\Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=\left( 1+2i \right)\left( -20-48i \right)........(v)$
Equation (v) can be again simplified as,
$\begin{align}
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( 1+2i \right)\left( -5-12i \right) \\
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( -5-12i-10i-24{{i}^{2}} \right)......(vi) \\
\end{align}$
In equation (vi) we have ${{i}^{2}}$, and we know ${{i}^{2}}=-1$ from equation (ii). Substituting this in equation (vi) we get,
\[\begin{align}
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( -5-12i-10i+24 \right) \\
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=4\left( 19-22i \right) \\
& \Rightarrow \left( 1+2i \right){{\left( 4-6i \right)}^{2}}=76-88i..........(vii) \\
\end{align}\]
From equation (vii) we get the cartesian form of the expression $\left( 1+2i \right){{\left( 4-6i \right)}^{2}}$.
Hence, the correct answer is $76-88i$.
Note: In this problem we can also find the value ${{z}^{2}}$using the direct formula${{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy$.
Where, $z=x+iy$. In this question, \[z=4-6i\]
Directly substituting this we get,
$\begin{align}
& \Rightarrow {{z}^{2}}=\left( {{x}^{2}}-{{y}^{2}} \right)+i2xy \\
& \Rightarrow {{z}^{2}}=\left( {{\left( 4 \right)}^{2}}-{{\left( -6 \right)}^{2}} \right)+i\left( 2\times -6\times 4 \right) \\
& \Rightarrow {{z}^{2}}=(16-36)+i\left( -48 \right) \\
& \Rightarrow {{z}^{2}}=-20-48i. \\
\end{align}$
And after this $\left( 1+2i \right){{\left( 4-6i \right)}^{2}}$can be also found using the direct formula,$pq=(ac-bd)+i(ad+bc)$.
Here,\[p=1+2i\],this implies \[a=1,b=2\]. Similarly, \[q=-20-48i\] implies \[c=-20,d=-48\].
Directly substituting this we get,
\[\begin{align}
& \Rightarrow pq=(ac-bd)+i(ad+bc) \\
& \Rightarrow pq=\left( \left( 1\times -20 \right)-\left( 2\times -48 \right) \right)+i\left( \left( 1\times -48 \right)+\left( 2\times -20 \right) \right) \\
& \Rightarrow pq=\left( -20+96 \right)+i\left( -48-40 \right) \\
& \Rightarrow pq=76-88i. \\
\end{align}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

