
Evaluate the following:
$\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{\sin bx}$ where $ a,b\ne 0$ \[\]
Answer
587.7k+ views
Hint: We multiply $x$ in the numerator and denominator of the quotient function $\dfrac{\sin ax}{\sin bx}$ . Then we divide and multiply $a$ with the numerator$\sin ax$. We also divide and multiply $b$ with the denominator$\sin bx$. We use the law of multiplication and division of limits and also the standard limit $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$ to evaluate.
Complete step by step answer:
We know that limiting value for any real valued single variable function $f\left( x \right)$ when the variable $x$ approaches to real number $a$ in the domain $f\left( x \right)$ is denoted by
\[\displaystyle \lim_{x \to a}f\left( x \right)=L\]
Here $L$ is called the limit of the function.
The limit $L$ exists for real valued single variable function $f\left( x \right)$ at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The multiplication law of limits is given by for two functions $f\left( x \right)$ and $g\left( x \right)$
\[\displaystyle \lim_{x \to a}f\left( x \right)\cdot \displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)\cdot g\left( x \right) \right)\]
The division rule of limits for two functions $f\left( x \right)$ and $g\left( x \right)\ne 0$ is,
\[\dfrac{\displaystyle \lim_{x \to a}f\left( x \right)}{\displaystyle \lim_{x \to a}g\left( x \right)}=\displaystyle \lim_{x \to a}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)\]
We also know that the limit of a constant is constant
\[\displaystyle \lim_{x \to a}C=C\]
We know the standard limit for sine function $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$. We
The given function to evaluate limit is
\[\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{\sin bx}\text{ where }a,b\ne 0\]
Let us multiply $x$ in the numerator and denominator.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\dfrac{\sin ax}{x}\text{ }\times \dfrac{x}{\sin bx} \\
& =\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{x}}{\dfrac{\sin bx}{x}}\text{ } \\
\end{align}\]
Let us multiply and divide $a$ in the numerator and also multiply and divide $b$ with in the denominator. We can do that because we have been provided with the condition $a\ne 0,b\ne 0$.So we have
\[=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{ax}\times a}{\dfrac{\sin bx}{bx}\times b}\text{ }\]
Now we use law of division and then law of multiplication to get ,
\[\begin{align}
& =\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{ax}\times a}{\dfrac{\sin bx}{bx}\times b}\text{ } \\
& \text{=}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times b}\text{ } \\
& \text{=}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times \displaystyle \lim_{x \to 0}a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times \displaystyle \lim_{x \to 0}b}\text{ } \\
\end{align}\]
We know that the limit of constant is constant . So we have,
\[\begin{align}
& \text{ =}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times \displaystyle \lim_{x \to 0}a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times \displaystyle \lim_{x \to 0}b}\text{ } \\
& \text{=}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin ax}{ax}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin bx}{bx}}\text{ } \\
\end{align}\]
Now we substitute $ax=u,bx=v$ in the above result to get,
\[\text{ =}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin u}{u}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin v}{v}}\text{ }\]
Now we use the standard limit $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$ and get,
\[\text{ =}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin u}{u}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin v}{v}}\text{ =}\dfrac{a\times 1}{b\times 1}=\dfrac{a}{b}\]
So the value of the limit is $\dfrac{a}{b}$
Note: We can alternatively solve the problem with L'Hopital's rule for the indeterminate form $\dfrac{0}{0}$. Here we differentiate the numerator and the denominator until the limiting value at the numerator is non-zero.
Complete step by step answer:
We know that limiting value for any real valued single variable function $f\left( x \right)$ when the variable $x$ approaches to real number $a$ in the domain $f\left( x \right)$ is denoted by
\[\displaystyle \lim_{x \to a}f\left( x \right)=L\]
Here $L$ is called the limit of the function.
The limit $L$ exists for real valued single variable function $f\left( x \right)$ at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The multiplication law of limits is given by for two functions $f\left( x \right)$ and $g\left( x \right)$
\[\displaystyle \lim_{x \to a}f\left( x \right)\cdot \displaystyle \lim_{x \to a}g\left( x \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right)\cdot g\left( x \right) \right)\]
The division rule of limits for two functions $f\left( x \right)$ and $g\left( x \right)\ne 0$ is,
\[\dfrac{\displaystyle \lim_{x \to a}f\left( x \right)}{\displaystyle \lim_{x \to a}g\left( x \right)}=\displaystyle \lim_{x \to a}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)\]
We also know that the limit of a constant is constant
\[\displaystyle \lim_{x \to a}C=C\]
We know the standard limit for sine function $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$. We
The given function to evaluate limit is
\[\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{\sin bx}\text{ where }a,b\ne 0\]
Let us multiply $x$ in the numerator and denominator.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\dfrac{\sin ax}{x}\text{ }\times \dfrac{x}{\sin bx} \\
& =\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{x}}{\dfrac{\sin bx}{x}}\text{ } \\
\end{align}\]
Let us multiply and divide $a$ in the numerator and also multiply and divide $b$ with in the denominator. We can do that because we have been provided with the condition $a\ne 0,b\ne 0$.So we have
\[=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{ax}\times a}{\dfrac{\sin bx}{bx}\times b}\text{ }\]
Now we use law of division and then law of multiplication to get ,
\[\begin{align}
& =\displaystyle \lim_{x \to 0}\dfrac{\dfrac{\sin ax}{ax}\times a}{\dfrac{\sin bx}{bx}\times b}\text{ } \\
& \text{=}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times b}\text{ } \\
& \text{=}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times \displaystyle \lim_{x \to 0}a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times \displaystyle \lim_{x \to 0}b}\text{ } \\
\end{align}\]
We know that the limit of constant is constant . So we have,
\[\begin{align}
& \text{ =}\dfrac{\displaystyle \lim_{x \to 0}\dfrac{\sin ax}{ax}\times \displaystyle \lim_{x \to 0}a}{\displaystyle \lim_{x \to 0}\dfrac{\sin bx}{bx}\times \displaystyle \lim_{x \to 0}b}\text{ } \\
& \text{=}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin ax}{ax}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin bx}{bx}}\text{ } \\
\end{align}\]
Now we substitute $ax=u,bx=v$ in the above result to get,
\[\text{ =}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin u}{u}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin v}{v}}\text{ }\]
Now we use the standard limit $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$ and get,
\[\text{ =}\dfrac{\underset{x\to 0}{\mathop{a\lim }}\,\dfrac{\sin u}{u}}{\underset{x\to 0}{\mathop{b\lim }}\,\dfrac{\sin v}{v}}\text{ =}\dfrac{a\times 1}{b\times 1}=\dfrac{a}{b}\]
So the value of the limit is $\dfrac{a}{b}$
Note: We can alternatively solve the problem with L'Hopital's rule for the indeterminate form $\dfrac{0}{0}$. Here we differentiate the numerator and the denominator until the limiting value at the numerator is non-zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

