
Evaluate the following:
\[\dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}}\]
Answer
609.6k+ views
Hint: We will use the trigonometric ratio table and find out the values of trigonometric ratios for the given expression as follows:
\[\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},sec{{30}^{\circ }}\dfrac{2}{\sqrt{3}},cosec{{30}^{\circ }}=2\]
Then we will substitute the values of those trigonometric ratios in the equation given in the equation and simplify to get the answer.
Complete step-by-step answer:
In the question, we have been given the expression \[\dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}}\].
The angles are all standard angles. So, we can refer to the following table for finding the value of trigonometric functions at standard angles.
Referring to the table above, we can see that \[\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},sec{{30}^{\circ }}\dfrac{2}{\sqrt{3}},cosec{{30}^{\circ }}=2\].
So by substituting these values in the expression given in the question, we get as follows:
\[\begin{align}
& \Rightarrow \dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}} \\
& \Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2}{\sqrt{3}}+2} \\
& \Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}}{2\left( \dfrac{1}{\sqrt{3}}+1 \right)} \\
& \Rightarrow \dfrac{1}{2\sqrt{2}\left( \dfrac{1+\sqrt{3}}{\sqrt{3}} \right)} \\
& \Rightarrow \dfrac{\sqrt{3}}{2\sqrt{2}\left( 1+\sqrt{3} \right)} \\
\end{align}\]
We have to simplify it further. So, on rationalizing the denominator, we get as follows:
\[\begin{align}
& \Rightarrow \dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}} \\
& \Rightarrow \dfrac{\sqrt{3}\times \left( \sqrt{3}-1 \right)\sqrt{2}}{2\sqrt{2}\left( 1+\sqrt{3} \right)\times \left( \sqrt{3}-1 \right)\sqrt{2}} \\
& \Rightarrow \dfrac{\sqrt{3}\times \sqrt{2}\left( \sqrt{3}-1 \right)}{2\times {{\left( \sqrt{2} \right)}^{2}}\left[ {{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}} \right]} \\
\end{align}\]
Since we already know that \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we used it to simplify the denominator of the above expression. Now, we can square the terms and we get,
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{2\times 2\left( 3-1 \right)} \\
& \Rightarrow \dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{4\times 2} \\
& \Rightarrow \dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{8} \\
\end{align}\]
Therefore, the required value of the expression is equal to \[\dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{8}\].
Note: Don’t get confused in the values of \[sec{{30}^{\circ }}\] and \[cosec{{30}^{\circ }}\]. Sometimes by mistake we may substitute the value of \[sec{{30}^{\circ }}=2\] and \[cosec{{30}^{\circ }}=\dfrac{2}{\sqrt{3}}\] which is wrong. So take care while substituting these values in the expression and substitute \[sec{{30}^{\circ }}=\dfrac{2}{\sqrt{3}}\] and \[cosec{{30}^{\circ }}=2\] properly. For this type of question, we must have to remember all the values of trigonometric ratio for the corresponding angles as shown in the solution.
\[\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},sec{{30}^{\circ }}\dfrac{2}{\sqrt{3}},cosec{{30}^{\circ }}=2\]
Then we will substitute the values of those trigonometric ratios in the equation given in the equation and simplify to get the answer.
Complete step-by-step answer:
In the question, we have been given the expression \[\dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}}\].
The angles are all standard angles. So, we can refer to the following table for finding the value of trigonometric functions at standard angles.
| Ratio/Angle (\[\theta \]) | \[{{0}^{\circ }}\] | \[{{30}^{\circ }}\] | \[{{45}^{\circ }}\] | \[{{60}^{\circ }}\] | \[{{90}^{\circ }}\] |
| \[\sin \theta \] | 0 | \[\dfrac{1}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{\sqrt{3}}{2}\] | 1 |
| \[\cos \theta \] | 1 | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{2}\] | 0 |
| \[tan\theta \] | 0 | \[\dfrac{1}{\sqrt{3}}\] | 1 | \[\sqrt{3}\] | Not defined |
| \[cosec\theta \] | Not defined | 2 | \[\sqrt{2}\] | \[\dfrac{2}{\sqrt{3}}\] | 1 |
| \[\sec \theta \] | 1 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | Not defined |
| \[\cot \theta \] | Not defined | \[\sqrt{3}\] | 1 | \[\dfrac{1}{\sqrt{3}}\] | 0 |
Referring to the table above, we can see that \[\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},sec{{30}^{\circ }}\dfrac{2}{\sqrt{3}},cosec{{30}^{\circ }}=2\].
So by substituting these values in the expression given in the question, we get as follows:
\[\begin{align}
& \Rightarrow \dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}} \\
& \Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2}{\sqrt{3}}+2} \\
& \Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}}{2\left( \dfrac{1}{\sqrt{3}}+1 \right)} \\
& \Rightarrow \dfrac{1}{2\sqrt{2}\left( \dfrac{1+\sqrt{3}}{\sqrt{3}} \right)} \\
& \Rightarrow \dfrac{\sqrt{3}}{2\sqrt{2}\left( 1+\sqrt{3} \right)} \\
\end{align}\]
We have to simplify it further. So, on rationalizing the denominator, we get as follows:
\[\begin{align}
& \Rightarrow \dfrac{\cos {{45}^{\circ }}}{\sec {{30}^{\circ }}+cosec{{30}^{\circ }}} \\
& \Rightarrow \dfrac{\sqrt{3}\times \left( \sqrt{3}-1 \right)\sqrt{2}}{2\sqrt{2}\left( 1+\sqrt{3} \right)\times \left( \sqrt{3}-1 \right)\sqrt{2}} \\
& \Rightarrow \dfrac{\sqrt{3}\times \sqrt{2}\left( \sqrt{3}-1 \right)}{2\times {{\left( \sqrt{2} \right)}^{2}}\left[ {{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}} \right]} \\
\end{align}\]
Since we already know that \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we used it to simplify the denominator of the above expression. Now, we can square the terms and we get,
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{2\times 2\left( 3-1 \right)} \\
& \Rightarrow \dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{4\times 2} \\
& \Rightarrow \dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{8} \\
\end{align}\]
Therefore, the required value of the expression is equal to \[\dfrac{\sqrt{6}\left( \sqrt{3}-1 \right)}{8}\].
Note: Don’t get confused in the values of \[sec{{30}^{\circ }}\] and \[cosec{{30}^{\circ }}\]. Sometimes by mistake we may substitute the value of \[sec{{30}^{\circ }}=2\] and \[cosec{{30}^{\circ }}=\dfrac{2}{\sqrt{3}}\] which is wrong. So take care while substituting these values in the expression and substitute \[sec{{30}^{\circ }}=\dfrac{2}{\sqrt{3}}\] and \[cosec{{30}^{\circ }}=2\] properly. For this type of question, we must have to remember all the values of trigonometric ratio for the corresponding angles as shown in the solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

