
Evaluate the following determinant $\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$ .
Answer
511.8k+ views
Hint: In this problem, we need to evaluate the given determinant $\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$ . We first need to know how to evaluate a determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as, $\begin{align}
& \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \times {{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta \\
\end{matrix} \right|+0+\cos \alpha \times {{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta \\
-\sin \beta & \cos \beta \\
\end{matrix} \right| \\
\end{align}$
Again, breaking down these determinants and then simplifying the final answer, we arrive at the answer.
Complete step by step answer:
In this problem, we need to evaluate,
$\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$
The cofactor of an element ${{a}_{ij}}$ is ${{\left( -1 \right)}^{i+j}}{{M}_{ij}}$ where, ${{M}_{ij}}$ is the minor of the element ${{a}_{ij}}$ found out by removing the corresponding row and column of the element and taking the remaining determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as,
$\begin{align}
& \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \times {{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta \\
\end{matrix} \right|+0+\cos \alpha \times {{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta \\
-\sin \beta & \cos \beta \\
\end{matrix} \right| \\
\end{align}$
We now simplify the above expression and get,
$\begin{align}
& \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left| \begin{matrix}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta \\
\end{matrix} \right|+\cos \alpha \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta \\
-\sin \beta & \cos \beta \\
\end{matrix} \right| \\
\end{align}$
We again repeat the same procedure by adding the product of an element and its co-factor along a single row or column to evaluate the remaining $2\times 2$ determinant. We then get,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -\sin \beta \left( \sin \alpha \sin \beta \right)-\cos \beta \left( \sin \alpha \cos \beta \right) \right] \\
& +\cos \alpha \left[ \cos \alpha \cos \beta \cos \beta -\cos \alpha \sin \beta \left( -\sin \beta \right) \right] \\
\end{align}$
Multiplying the terms, we get,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -{{\sin }^{2}}\beta \sin \alpha -\sin \alpha {{\cos }^{2}}\beta \right]+\cos \alpha \left[ \cos \alpha {{\cos }^{2}}\beta +\cos \alpha {{\sin }^{2}}\beta \right] \\
\end{align}$
Now, taking $-\sin \alpha $ common from the first term and $\cos \alpha $ common from the second term, we get,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -\sin \alpha \left( {{\sin }^{2}}\beta +{{\cos }^{2}}\beta \right) \right]+\cos \alpha \left[ \cos \alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right) \right] \\
\end{align}$
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . So, the above expression becomes,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -\sin \alpha \right]+\cos \alpha \left[ \cos \alpha \right]={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{align}$
Again, using the same trigonometric identity, we get,
$\Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|=1$
Thus, we can conclude that the value of the determinant $\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$ is $1$ .
Note: We must be thorough with the concepts of minors and cofactors. We also must keep in mind to multiply an additional $-1$ for the odd position terms. Evaluating a determinant is a long process, so we must remain patient and should flawlessly solve the problem.
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$ . We first need to know how to evaluate a determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as, $\begin{align}
& \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \times {{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta \\
\end{matrix} \right|+0+\cos \alpha \times {{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta \\
-\sin \beta & \cos \beta \\
\end{matrix} \right| \\
\end{align}$
Again, breaking down these determinants and then simplifying the final answer, we arrive at the answer.
Complete step by step answer:
In this problem, we need to evaluate,
$\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$
The cofactor of an element ${{a}_{ij}}$ is ${{\left( -1 \right)}^{i+j}}{{M}_{ij}}$ where, ${{M}_{ij}}$ is the minor of the element ${{a}_{ij}}$ found out by removing the corresponding row and column of the element and taking the remaining determinant. We evaluate a determinant by adding the product of an element and its co-factor along a single row or column. So, for the given determinant, we evaluate along the third column as,
$\begin{align}
& \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \times {{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta \\
\end{matrix} \right|+0+\cos \alpha \times {{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta \\
-\sin \beta & \cos \beta \\
\end{matrix} \right| \\
\end{align}$
We now simplify the above expression and get,
$\begin{align}
& \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left| \begin{matrix}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta \\
\end{matrix} \right|+\cos \alpha \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta \\
-\sin \beta & \cos \beta \\
\end{matrix} \right| \\
\end{align}$
We again repeat the same procedure by adding the product of an element and its co-factor along a single row or column to evaluate the remaining $2\times 2$ determinant. We then get,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -\sin \beta \left( \sin \alpha \sin \beta \right)-\cos \beta \left( \sin \alpha \cos \beta \right) \right] \\
& +\cos \alpha \left[ \cos \alpha \cos \beta \cos \beta -\cos \alpha \sin \beta \left( -\sin \beta \right) \right] \\
\end{align}$
Multiplying the terms, we get,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -{{\sin }^{2}}\beta \sin \alpha -\sin \alpha {{\cos }^{2}}\beta \right]+\cos \alpha \left[ \cos \alpha {{\cos }^{2}}\beta +\cos \alpha {{\sin }^{2}}\beta \right] \\
\end{align}$
Now, taking $-\sin \alpha $ common from the first term and $\cos \alpha $ common from the second term, we get,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -\sin \alpha \left( {{\sin }^{2}}\beta +{{\cos }^{2}}\beta \right) \right]+\cos \alpha \left[ \cos \alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right) \right] \\
\end{align}$
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . So, the above expression becomes,
$\begin{align}
& \Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right| \\
& =-\sin \alpha \left[ -\sin \alpha \right]+\cos \alpha \left[ \cos \alpha \right]={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{align}$
Again, using the same trigonometric identity, we get,
$\Rightarrow \left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|=1$
Thus, we can conclude that the value of the determinant $\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|$ is $1$ .
Note: We must be thorough with the concepts of minors and cofactors. We also must keep in mind to multiply an additional $-1$ for the odd position terms. Evaluating a determinant is a long process, so we must remain patient and should flawlessly solve the problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

