
Evaluate the following definite integrals:
\[\int\limits_0^1 {\dfrac{{1 - x}}{{1 + x}}dx} \]
Answer
618.9k+ views
Hint: Split the terms in the numerator of the definite integral and divide them to make the integration easily. Then apply the definite integral values to the obtained integration solution. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Let \[I = \int\limits_0^1 {\dfrac{{1 - x}}{{1 + x}}dx} \]
Adding and subtracting 1 to the numerator, we have
\[
\Rightarrow I = \int\limits_0^1 {\dfrac{{2 - 1 - x}}{{1 + x}}dx} \\
\Rightarrow I = \int\limits_0^1 {\dfrac{{2 - \left( {1 + x} \right)}}{{1 + x}}dx} \\
\]
Splitting the terms in numerator, we get
\[
\Rightarrow I = \int\limits_0^1 {\left( {\dfrac{2}{{1 + x}} - \dfrac{{1 + x}}{{1 + x}}} \right)dx} \\
\Rightarrow I = \int\limits_0^1 {\left( {\dfrac{2}{{1 + x}} - 1} \right)dx} \\
\Rightarrow I = \int\limits_0^1 {\dfrac{2}{{1 + x}}dx} - \int\limits_0^1 {1dx} \\
\]
By integrating, we get
\[
\Rightarrow I = \left[ {2\log \left( {1 + x} \right)} \right]_0^1 - \left[ x \right]_0^1 \\
\Rightarrow I = 2\left[ {\log \left( {1 + x} \right)} \right]_0^1 - \left[ x \right]_0^1 \\
\]
Substituting the integral values, we get
\[
\Rightarrow I = 2\left[ {\log \left( {1 + 1} \right) - \log \left( {1 + 0} \right)} \right] - \left[ {1 - 0} \right] \\
\Rightarrow I = 2\left[ {\log \left( 2 \right) - \log \left( 1 \right)} \right] - \left[ {1 - 0} \right] \\
\Rightarrow I = 2\left[ {\log 2 - 0} \right] - 1 \\
\Rightarrow I = 2\log 2 - 1 \\
\]
Therefore, the solution of definite integral \[\int\limits_0^1 {\dfrac{{1 - x}}{{1 + x}}dx} \] is \[2\log 2 - 1\].
Note: A definite integral has start and end values: in other words there is an interval [a, b] where a and b are called limits, bounds or boundaries. Unlike in indefinite integration there will be no integrating constant in definite integration.
Complete step-by-step answer:
Let \[I = \int\limits_0^1 {\dfrac{{1 - x}}{{1 + x}}dx} \]
Adding and subtracting 1 to the numerator, we have
\[
\Rightarrow I = \int\limits_0^1 {\dfrac{{2 - 1 - x}}{{1 + x}}dx} \\
\Rightarrow I = \int\limits_0^1 {\dfrac{{2 - \left( {1 + x} \right)}}{{1 + x}}dx} \\
\]
Splitting the terms in numerator, we get
\[
\Rightarrow I = \int\limits_0^1 {\left( {\dfrac{2}{{1 + x}} - \dfrac{{1 + x}}{{1 + x}}} \right)dx} \\
\Rightarrow I = \int\limits_0^1 {\left( {\dfrac{2}{{1 + x}} - 1} \right)dx} \\
\Rightarrow I = \int\limits_0^1 {\dfrac{2}{{1 + x}}dx} - \int\limits_0^1 {1dx} \\
\]
By integrating, we get
\[
\Rightarrow I = \left[ {2\log \left( {1 + x} \right)} \right]_0^1 - \left[ x \right]_0^1 \\
\Rightarrow I = 2\left[ {\log \left( {1 + x} \right)} \right]_0^1 - \left[ x \right]_0^1 \\
\]
Substituting the integral values, we get
\[
\Rightarrow I = 2\left[ {\log \left( {1 + 1} \right) - \log \left( {1 + 0} \right)} \right] - \left[ {1 - 0} \right] \\
\Rightarrow I = 2\left[ {\log \left( 2 \right) - \log \left( 1 \right)} \right] - \left[ {1 - 0} \right] \\
\Rightarrow I = 2\left[ {\log 2 - 0} \right] - 1 \\
\Rightarrow I = 2\log 2 - 1 \\
\]
Therefore, the solution of definite integral \[\int\limits_0^1 {\dfrac{{1 - x}}{{1 + x}}dx} \] is \[2\log 2 - 1\].
Note: A definite integral has start and end values: in other words there is an interval [a, b] where a and b are called limits, bounds or boundaries. Unlike in indefinite integration there will be no integrating constant in definite integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

