Questions & Answers
Question
Answers

Evaluate the following cube root
$\sqrt[3]{{ - 2\dfrac{{10}}{{27}}}}$

Answer Verified Verified
Hint:- In this question we have given $\sqrt[3]{{ - 2\dfrac{{10}}{{27}}}}$ So the key concept is that first simplify the inner part of the cube root by using the concept of fraction and then apply the cube root.

Complete step-by-step answer:
Now consider the given expression
$
   \Rightarrow \sqrt[3]{{ - 2\dfrac{{10}}{{27}}}} \\
   \Rightarrow \sqrt[3]{{ - \dfrac{{64}}{{27}}}} \\
   \Rightarrow \sqrt[3]{{ - {{\left( {\dfrac{4}{3}} \right)}^3}}} \\
   \Rightarrow \sqrt[3]{{( - 1) \times {{\left( {\dfrac{4}{3}} \right)}^3}}} \\
$ ………… (1)
Now taken $\dfrac{4}{3}$ outside of cube root from equation (1) we get,
$ \Rightarrow \dfrac{4}{3} \times \sqrt[3]{{ - 1}}$ ………. (2)
And we can write $ - 1 = {\left( { - 1} \right)^3}$ in equation (2) we get,
$
   \Rightarrow \dfrac{4}{3} \times \sqrt[3]{{{{\left( { - 1} \right)}^3}}} \\
   \Rightarrow \dfrac{4}{3} \times ( - 1) \\
   \Rightarrow - \dfrac{4}{3} \\
$
 Hence the answer is $ - \dfrac{4}{3}$ .
Note :- Whenever we face such types of problems the key concept is to simplify the given expression in-to-out which means that first solve the inner part and then simplify the cube root part of the expression to get the right answer.
Bookmark added to your notes.
View Notes
×