
Evaluate the expression ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2$.
Answer
613.2k+ views
Hint: The given problem is related to logarithms. Express the argument as a power of the base. Then use the following properties:
(i). $\log {{a}^{m}}=m\log a$ .
(ii). ${{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b$
(iii). ${{\log }_{a}}a=1$
Complete step-by-step answer:
The given expression is ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2$. Let us assume ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256$ to be a and $2{{\log }_{\sqrt{2}}}2$ be b.
Let us solve these separately.
First, let us solve for a.
$a={{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256$
$\Rightarrow a={{\log }_{2}}{{\log }_{2}}\left( {{\log }_{4}}256 \right)$
Now, we can express 256 as \[=256=4\times 4\times 4\times 4={{4}^{4}}\] .
\[\Rightarrow a={{\log }_{2}}{{\log }_{2}}\left( {{\log }_{4}}{{4}^{4}} \right)\]
Now, we know $\log {{a}^{m}}=m\log a$ . So, ${{\log }_{4}}{{4}^{4}}=4{{\log }_{4}}4$ . We also know ${{\log }_{a}}a=1$ . So, ${{\log }_{4}}4=1$.
$\Rightarrow {{\log }_{4}}{{4}^{4}}=4$
\[\Rightarrow a={{\log }_{2}}{{\log }_{2}}4\]
\[={{\log }_{2}}\left( {{\log }_{2}}4 \right)\ \]
\[={{\log }_{2}}\left( {{\log }_{2}}{{2}^{2}} \right)\]
\[={{\log }_{2}}2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \text{since}\ {{\log }_{a}}a=1 \right]\]
\[=1\]
\[\therefore a=1\]
Now, let us solve for b.
$\begin{align}
& b=2{{\log }_{\left( \sqrt{2} \right)}}2 \\
& =2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2 \\
\end{align}$
Now, we know, ${{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b$ .
Using the above expression,
$\begin{align}
& 2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2=2\times \dfrac{1}{\left( \dfrac{1}{2} \right)}\times {{\log }_{2}}2 \\
& =2\times 2\times 1 \\
& =4 \\
& \therefore b=4 \\
\end{align}$
Now, we are asked to find the value of ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2$ , i.e. a + b. We know, a = 1 and b = 4.
$\begin{align}
& \Rightarrow a+b=1+4 \\
& =5 \\
\end{align}$
Therefore, the answer is 5.
Note: While using the properties, make sure to use the terms properly. For example: While evaluating b, we used the property ${{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b$ . On comparing with $2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2$ , we get $x=\dfrac{1}{2}$ . Some students get confused and write x = 2, which is wrong and can lead to wrong answers.
(i). $\log {{a}^{m}}=m\log a$ .
(ii). ${{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b$
(iii). ${{\log }_{a}}a=1$
Complete step-by-step answer:
The given expression is ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2$. Let us assume ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256$ to be a and $2{{\log }_{\sqrt{2}}}2$ be b.
Let us solve these separately.
First, let us solve for a.
$a={{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256$
$\Rightarrow a={{\log }_{2}}{{\log }_{2}}\left( {{\log }_{4}}256 \right)$
Now, we can express 256 as \[=256=4\times 4\times 4\times 4={{4}^{4}}\] .
\[\Rightarrow a={{\log }_{2}}{{\log }_{2}}\left( {{\log }_{4}}{{4}^{4}} \right)\]
Now, we know $\log {{a}^{m}}=m\log a$ . So, ${{\log }_{4}}{{4}^{4}}=4{{\log }_{4}}4$ . We also know ${{\log }_{a}}a=1$ . So, ${{\log }_{4}}4=1$.
$\Rightarrow {{\log }_{4}}{{4}^{4}}=4$
\[\Rightarrow a={{\log }_{2}}{{\log }_{2}}4\]
\[={{\log }_{2}}\left( {{\log }_{2}}4 \right)\ \]
\[={{\log }_{2}}\left( {{\log }_{2}}{{2}^{2}} \right)\]
\[={{\log }_{2}}2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ \text{since}\ {{\log }_{a}}a=1 \right]\]
\[=1\]
\[\therefore a=1\]
Now, let us solve for b.
$\begin{align}
& b=2{{\log }_{\left( \sqrt{2} \right)}}2 \\
& =2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2 \\
\end{align}$
Now, we know, ${{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b$ .
Using the above expression,
$\begin{align}
& 2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2=2\times \dfrac{1}{\left( \dfrac{1}{2} \right)}\times {{\log }_{2}}2 \\
& =2\times 2\times 1 \\
& =4 \\
& \therefore b=4 \\
\end{align}$
Now, we are asked to find the value of ${{\log }_{2}}{{\log }_{2}}{{\log }_{4}}256+2{{\log }_{\sqrt{2}}}2$ , i.e. a + b. We know, a = 1 and b = 4.
$\begin{align}
& \Rightarrow a+b=1+4 \\
& =5 \\
\end{align}$
Therefore, the answer is 5.
Note: While using the properties, make sure to use the terms properly. For example: While evaluating b, we used the property ${{\log }_{{{a}^{x}}}}b=\dfrac{1}{x}{{\log }_{a}}b$ . On comparing with $2{{\log }_{{{2}^{\dfrac{1}{2}}}}}2$ , we get $x=\dfrac{1}{2}$ . Some students get confused and write x = 2, which is wrong and can lead to wrong answers.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

