
Evaluate the expression $ {\left( {0.01024} \right)^{ - \dfrac{2}{5}}} $ .
Answer
566.4k+ views
Hint: First make the prime factorization of the given number. Then use the rules of the indices in the simplification of the given expression and get the value of the expression given in the question.
Complete step-by-step answer:
Simplify the given expression by taking the fraction of the value given.
$ {\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = {\left( {\dfrac{{1024}}{{100000}}} \right)^{ - \dfrac{2}{5}}} $
Now make the numbers in the denominator and numerator as power of some number.
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = {\left( {\dfrac{{1024}}{{100000}}} \right)^{ - \dfrac{2}{5}}} \\
= {\left( {\dfrac{{{2^{10}}}}{{{{10}^5}}}} \right)^{ - \dfrac{2}{5}}} \;
$
Now take the power separately for the numerator and denominator.
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = {\left( {\dfrac{{{2^{10}}}}{{{{10}^5}}}} \right)^{ - \dfrac{2}{5}}} \\
= \dfrac{{{{\left( {{2^{10}}} \right)}^{ - \dfrac{2}{5}}}}}{{{{\left( {{{10}^5}} \right)}^{ - \dfrac{2}{5}}}}} \;
$
Now simplify the expression by the rule of indices $ {\left( {{a^b}} \right)^c} = {a^{bc}} $ .
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = \dfrac{{{{\left( {{2^{10}}} \right)}^{ - \dfrac{2}{5}}}}}{{{{\left( {{{10}^5}} \right)}^{ - \dfrac{2}{5}}}}} \\
= \dfrac{{{{\left( 2 \right)}^{10 \times - \dfrac{2}{5}}}}}{{{{\left( {10} \right)}^{5 \times - \dfrac{2}{5}}}}} \\
= \dfrac{{{{\left( 2 \right)}^{ - 4}}}}{{{{\left( {10} \right)}^{ - 2}}}} \\
$
Now solve further the expression by the rule of indices $ {a^{ - b}} = \dfrac{1}{{{a^b}}} $ .
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = \dfrac{{{{\left( 2 \right)}^{ - 4}}}}{{{{\left( {10} \right)}^{ - 2}}}} \\
= \dfrac{{\dfrac{1}{{{2^4}}}}}{{\dfrac{1}{{{{10}^2}}}}} \\
= \dfrac{1}{{{2^4}}} \times \dfrac{{{{10}^2}}}{1} \\
= \dfrac{{100}}{{16}} \\
= \dfrac{{25}}{4} \\
= 6.25 \;
$
So, the value of $ {\left( {0.01024} \right)^{ - \dfrac{2}{5}}} $ is equal to $ 6.25 $ .
So, the correct answer is “ $ 6.25 $”.
Note: Make the given number as the power of any integer number and then use the rule of indices given below for the power and fractions powers also to simplify the value given in the question:
$ {a^b}.{a^c} = {a^{b + c}} $ ,
$ {a^{ - b}} = \dfrac{1}{{{a^b}}} $ and,
$ {\left( {{a^b}} \right)^c} = {a^{bc}} $
Complete step-by-step answer:
Simplify the given expression by taking the fraction of the value given.
$ {\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = {\left( {\dfrac{{1024}}{{100000}}} \right)^{ - \dfrac{2}{5}}} $
Now make the numbers in the denominator and numerator as power of some number.
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = {\left( {\dfrac{{1024}}{{100000}}} \right)^{ - \dfrac{2}{5}}} \\
= {\left( {\dfrac{{{2^{10}}}}{{{{10}^5}}}} \right)^{ - \dfrac{2}{5}}} \;
$
Now take the power separately for the numerator and denominator.
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = {\left( {\dfrac{{{2^{10}}}}{{{{10}^5}}}} \right)^{ - \dfrac{2}{5}}} \\
= \dfrac{{{{\left( {{2^{10}}} \right)}^{ - \dfrac{2}{5}}}}}{{{{\left( {{{10}^5}} \right)}^{ - \dfrac{2}{5}}}}} \;
$
Now simplify the expression by the rule of indices $ {\left( {{a^b}} \right)^c} = {a^{bc}} $ .
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = \dfrac{{{{\left( {{2^{10}}} \right)}^{ - \dfrac{2}{5}}}}}{{{{\left( {{{10}^5}} \right)}^{ - \dfrac{2}{5}}}}} \\
= \dfrac{{{{\left( 2 \right)}^{10 \times - \dfrac{2}{5}}}}}{{{{\left( {10} \right)}^{5 \times - \dfrac{2}{5}}}}} \\
= \dfrac{{{{\left( 2 \right)}^{ - 4}}}}{{{{\left( {10} \right)}^{ - 2}}}} \\
$
Now solve further the expression by the rule of indices $ {a^{ - b}} = \dfrac{1}{{{a^b}}} $ .
$
{\left( {0.01024} \right)^{ - \dfrac{2}{5}}} = \dfrac{{{{\left( 2 \right)}^{ - 4}}}}{{{{\left( {10} \right)}^{ - 2}}}} \\
= \dfrac{{\dfrac{1}{{{2^4}}}}}{{\dfrac{1}{{{{10}^2}}}}} \\
= \dfrac{1}{{{2^4}}} \times \dfrac{{{{10}^2}}}{1} \\
= \dfrac{{100}}{{16}} \\
= \dfrac{{25}}{4} \\
= 6.25 \;
$
So, the value of $ {\left( {0.01024} \right)^{ - \dfrac{2}{5}}} $ is equal to $ 6.25 $ .
So, the correct answer is “ $ 6.25 $”.
Note: Make the given number as the power of any integer number and then use the rule of indices given below for the power and fractions powers also to simplify the value given in the question:
$ {a^b}.{a^c} = {a^{b + c}} $ ,
$ {a^{ - b}} = \dfrac{1}{{{a^b}}} $ and,
$ {\left( {{a^b}} \right)^c} = {a^{bc}} $
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

