
Evaluate the expression: $\dfrac{{\sin \theta \cos \theta \sin ({{90}^0} - \theta )}}{{\cos ({{90}^0} - \theta )}} + \dfrac{{\cos \theta \sin \theta \cos ({{90}^0} - \theta )}}{{\sin ({{90}^0} - \theta )}} + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
(a). 1
(b). 2
(c). 4
(d). 3
Answer
611.1k+ views
Hint- This question requires the basic concepts of Trigonometry and the Trigonometric Pythagorean identities. Use trigonometric ratios of angle $({90^0} - \theta )$ to proceed and simplify each expression to get the answer.
Complete step-by-step answer:
We have to evaluate $\dfrac{{\sin \theta \cos \theta \sin ({{90}^0} - \theta )}}{{\cos ({{90}^0} - \theta )}} + \dfrac{{\cos \theta \sin \theta \cos ({{90}^0} - \theta )}}{{\sin ({{90}^0} - \theta )}} + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
We know that, $\sin ({90^0} - \theta ) = \cos \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $
On substituting the values in the expression, we get
$ \Rightarrow \dfrac{{\sin \theta \cos \theta \cos \theta }}{{\sin \theta }} + \dfrac{{\cos \theta \sin \theta \sin \theta }}{{\cos \theta }} + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
$ \Rightarrow {\cos ^2}\theta + {\sin ^2}\theta + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
Again, we will use $\sin ({90^0} - \theta ) = \cos \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $
Here, ${\sin ^2}{27^0} = {\sin ^2}({90^0} - {63^0}) = {\cos ^2}{63^0}$ and ${\cos ^2}{40^0} = {\cos ^2}({90^0} - {50^0}) = {\sin ^2}{50^0}$
Also, we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow 1 + \dfrac{{{{\cos }^2}{{63}^0} + {{\sin }^2}{{63}^0}}}{{{{\sin }^2}{{50}^0} + {{\cos }^2}{{50}^0}}}$
$ \Rightarrow 1 + \dfrac{1}{1}$
$ \Rightarrow 1 + 1 = 2$
Hence, our required expression evaluates down to 2
$\therefore $ Option B. 2 is our correct answer.
Note- Always remember in these types of questions, try to change the trigonometric ratios of angles $({90^0} \pm \theta )$ , $({180^0} \pm \theta )$ to the corresponding trigonometric ratios of angle $\theta $ and then apply the simple trigonometric identities like we used ${\sin ^2}\theta + {\cos ^2}\theta = 1$ here.
Complete step-by-step answer:
We have to evaluate $\dfrac{{\sin \theta \cos \theta \sin ({{90}^0} - \theta )}}{{\cos ({{90}^0} - \theta )}} + \dfrac{{\cos \theta \sin \theta \cos ({{90}^0} - \theta )}}{{\sin ({{90}^0} - \theta )}} + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
We know that, $\sin ({90^0} - \theta ) = \cos \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $
On substituting the values in the expression, we get
$ \Rightarrow \dfrac{{\sin \theta \cos \theta \cos \theta }}{{\sin \theta }} + \dfrac{{\cos \theta \sin \theta \sin \theta }}{{\cos \theta }} + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
$ \Rightarrow {\cos ^2}\theta + {\sin ^2}\theta + \dfrac{{{{\sin }^2}{{27}^0} + {{\sin }^2}{{63}^0}}}{{{{\cos }^2}{{40}^0} + {{\cos }^2}{{50}^0}}}$
Again, we will use $\sin ({90^0} - \theta ) = \cos \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $
Here, ${\sin ^2}{27^0} = {\sin ^2}({90^0} - {63^0}) = {\cos ^2}{63^0}$ and ${\cos ^2}{40^0} = {\cos ^2}({90^0} - {50^0}) = {\sin ^2}{50^0}$
Also, we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow 1 + \dfrac{{{{\cos }^2}{{63}^0} + {{\sin }^2}{{63}^0}}}{{{{\sin }^2}{{50}^0} + {{\cos }^2}{{50}^0}}}$
$ \Rightarrow 1 + \dfrac{1}{1}$
$ \Rightarrow 1 + 1 = 2$
Hence, our required expression evaluates down to 2
$\therefore $ Option B. 2 is our correct answer.
Note- Always remember in these types of questions, try to change the trigonometric ratios of angles $({90^0} \pm \theta )$ , $({180^0} \pm \theta )$ to the corresponding trigonometric ratios of angle $\theta $ and then apply the simple trigonometric identities like we used ${\sin ^2}\theta + {\cos ^2}\theta = 1$ here.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

