Answer
Verified
426.6k+ views
Hint: We start solving the problem by recalling the determinant of the matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. We use this definition for the matrix and make use of the result ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$ to proceed through the problem. We then make use of the result ${{\log }_{a}}b\times {{\log }_{b}}a=1$ and make necessary calculations to find the required value of the determinant.
Complete step by step answer:
According to the problem, we need to find the determinant of the given matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ and find its closest integer.
We know that the determinant of the matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is defined as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. Let us use this definition for finding the determinant of matrix A.
So, we have $\left| A \right|=\left| \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right|$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}512\times {{\log }_{4}}9 \right)-\left( {{\log }_{3}}8\times {{\log }_{4}}3 \right)$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}{{2}^{9}}\times {{\log }_{{{2}^{2}}}}{{3}^{2}} \right)-\left( {{\log }_{3}}{{2}^{3}}\times {{\log }_{{{2}^{2}}}}3 \right)$ ---(1).
We know that ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$. We use this result in equation (1).
$\Rightarrow \left| A \right|=\left( \left( \dfrac{9}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{2}{2}{{\log }_{2}}3 \right) \right)-\left( \left( \dfrac{3}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=\left( \left( 9{{\log }_{3}}2 \right)\times \left( {{\log }_{2}}3 \right) \right)-\left( \left( 3{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=9\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)-\dfrac{3}{2}\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)$ ---(2).
We know that ${{\log }_{a}}b\times {{\log }_{b}}a=1$. We use this result in equation (2).
$\Rightarrow \left| A \right|=9\left( 1 \right)-\dfrac{3}{2}\left( 1 \right)$.
$\Rightarrow \left| A \right|=9-\dfrac{3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{18-3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{15}{2}$.
$\Rightarrow \left| A \right|=7.5$.
We know that the closest integer(s) to 7.5 is 7 or 8.
∴ The closest integer(s) to the determinant of matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ is 7 or 8.
Note: We can prove ${{\log }_{a}}b\times {{\log }_{b}}a=1$ by using the fact ${{\log }_{a}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}a}$. We can see that the given problem contains a heavy amount of calculation, so we need to perform each step carefully. We should not confuse $\left| A \right|$ with modulus of A and take only positive value for the determinant which is the most common mistake done by students. We can see that the obtained determinant is the middle value of the integers 7 and 8 which is the reason why we had taken both integers as closest.
a & b \\
c & d \\
\end{matrix} \right]$ as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. We use this definition for the matrix and make use of the result ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$ to proceed through the problem. We then make use of the result ${{\log }_{a}}b\times {{\log }_{b}}a=1$ and make necessary calculations to find the required value of the determinant.
Complete step by step answer:
According to the problem, we need to find the determinant of the given matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ and find its closest integer.
We know that the determinant of the matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is defined as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. Let us use this definition for finding the determinant of matrix A.
So, we have $\left| A \right|=\left| \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right|$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}512\times {{\log }_{4}}9 \right)-\left( {{\log }_{3}}8\times {{\log }_{4}}3 \right)$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}{{2}^{9}}\times {{\log }_{{{2}^{2}}}}{{3}^{2}} \right)-\left( {{\log }_{3}}{{2}^{3}}\times {{\log }_{{{2}^{2}}}}3 \right)$ ---(1).
We know that ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$. We use this result in equation (1).
$\Rightarrow \left| A \right|=\left( \left( \dfrac{9}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{2}{2}{{\log }_{2}}3 \right) \right)-\left( \left( \dfrac{3}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=\left( \left( 9{{\log }_{3}}2 \right)\times \left( {{\log }_{2}}3 \right) \right)-\left( \left( 3{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=9\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)-\dfrac{3}{2}\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)$ ---(2).
We know that ${{\log }_{a}}b\times {{\log }_{b}}a=1$. We use this result in equation (2).
$\Rightarrow \left| A \right|=9\left( 1 \right)-\dfrac{3}{2}\left( 1 \right)$.
$\Rightarrow \left| A \right|=9-\dfrac{3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{18-3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{15}{2}$.
$\Rightarrow \left| A \right|=7.5$.
We know that the closest integer(s) to 7.5 is 7 or 8.
∴ The closest integer(s) to the determinant of matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ is 7 or 8.
Note: We can prove ${{\log }_{a}}b\times {{\log }_{b}}a=1$ by using the fact ${{\log }_{a}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}a}$. We can see that the given problem contains a heavy amount of calculation, so we need to perform each step carefully. We should not confuse $\left| A \right|$ with modulus of A and take only positive value for the determinant which is the most common mistake done by students. We can see that the obtained determinant is the middle value of the integers 7 and 8 which is the reason why we had taken both integers as closest.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths