
Evaluate the definite integral $\int\limits_{0}^{1}{\left( x{{e}^{x}}+\sin \dfrac{\pi x}{4} \right)}dx$
Answer
507k+ views
Hint: Break the terms of the given integral into two parts. Calculate the integral of $\sin \dfrac{\pi x}{4}$ by using the formula $\int{\sin \left( ax+b \right)dx=\dfrac{-\cos \left( ax+b \right)}{a}}$ , here a and b are the constants. Now to calculate the integral of $x{{e}^{x}}$ , assume x as function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and ${{e}^{x}}$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$ and apply the rule of integration by parts given as$\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ to get the answer. Here, \[{{f}_{1}}'\left( x \right)=\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right) \right)\].
Complete step-by-step solution:
Here, we are required to evaluate the integral $\int\limits_{0}^{1}{\left( x{{e}^{x}}+\sin \dfrac{\pi x}{4} \right)}dx$. Let us assume its value as I. so we have,
$\Rightarrow I=\int\limits_{0}^{1}{\left( x{{e}^{x}}+\sin \dfrac{\pi x}{4} \right)}dx$
Breaking the terms, we get
\[\Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\int\limits_{0}^{1}{\sin \dfrac{\pi x}{4}dx}\]
Now we know that $\int{\sin \left( ax+b \right)dx=\dfrac{-\cos \left( ax+b \right)}{a}}$, where a and b are constants. So, we get
\[\begin{align}
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\left[ \dfrac{-\cos \dfrac{\pi x}{4}}{\dfrac{\pi }{4}} \right]_{0}^{1} \\
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ -\cos \dfrac{\pi x}{4} \right]_{0}^{1} \\
\end{align}\]
Substituting the limits, we get
\[\begin{align}
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ -\cos \dfrac{\pi }{4}-(-\cos 0) \right] \\
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ -\dfrac{1}{\sqrt{2}}+1 \right] \\
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right]\ldots \ldots \ldots \left( i \right) \\
\end{align}\]
Now, we have to calculate the integral of $x{{e}^{x}}$ which is a product of two functions. That means we have to apply the integration by parts. Clearly, we can see that in the product $x{{e}^{x}}$, x is algebraic and ${{e}^{x}}$ is an exponential function. So, according to the ILATE rule we have to assume x as the function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and ${{e}^{x}}$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$. Here, ILATE stands for
I – Inverse trigonometric function
L – Logarithmic function
A – Algebraic function
T – Trigonometric function
E – Exponential function
So, the numbering of the functions is done according to the order of appearance in the above list.
Now to calculate the integral apply the formula $\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ and substitute the limits. Here, \[{{f}_{1}}'\left( x \right)=\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right) \right)\]. So applying the formula for $x{{e}^{x}}$ in equation (i), we get
\[\begin{align}
& \Rightarrow I=\left[ x\int{{{e}^{x}}dx} \right]_{0}^{1}-\int\limits_{0}^{1}{\dfrac{dx}{dx}\left( \int{{{e}^{x}}dx} \right)dx}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=\left[ x{{e}^{x}} \right]_{0}^{1}-\int\limits_{0}^{1}{{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=\left[ x{{e}^{x}} \right]_{0}^{1}-\left[ {{e}^{x}} \right]_{0}^{1}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
\end{align}\]
Substituting the limits, we get
\[\begin{align}
& \Rightarrow I=\left[ 1{{e}^{1}}-0{{e}^{0}} \right]-\left[ {{e}^{1}}-{{e}^{0}} \right]+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I={{e}^{1}}-\left[ {{e}^{1}}-1 \right]+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=e-e+1+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=1+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
\end{align}\]
Note: One may note that whenever we have to calculate the integral of products of two different functions we have to apply integration by parts method and numbering should be done according to the ILATE rule. So, you must remember the ILATE rule and the formula used for the integration by parts method to solve the above questions. Remember the basic formulas of integration of functions like ${{e}^{x}},\sin x,\cos x$ etc…
Complete step-by-step solution:
Here, we are required to evaluate the integral $\int\limits_{0}^{1}{\left( x{{e}^{x}}+\sin \dfrac{\pi x}{4} \right)}dx$. Let us assume its value as I. so we have,
$\Rightarrow I=\int\limits_{0}^{1}{\left( x{{e}^{x}}+\sin \dfrac{\pi x}{4} \right)}dx$
Breaking the terms, we get
\[\Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\int\limits_{0}^{1}{\sin \dfrac{\pi x}{4}dx}\]
Now we know that $\int{\sin \left( ax+b \right)dx=\dfrac{-\cos \left( ax+b \right)}{a}}$, where a and b are constants. So, we get
\[\begin{align}
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\left[ \dfrac{-\cos \dfrac{\pi x}{4}}{\dfrac{\pi }{4}} \right]_{0}^{1} \\
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ -\cos \dfrac{\pi x}{4} \right]_{0}^{1} \\
\end{align}\]
Substituting the limits, we get
\[\begin{align}
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ -\cos \dfrac{\pi }{4}-(-\cos 0) \right] \\
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ -\dfrac{1}{\sqrt{2}}+1 \right] \\
& \Rightarrow I=\int\limits_{0}^{1}{x{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right]\ldots \ldots \ldots \left( i \right) \\
\end{align}\]
Now, we have to calculate the integral of $x{{e}^{x}}$ which is a product of two functions. That means we have to apply the integration by parts. Clearly, we can see that in the product $x{{e}^{x}}$, x is algebraic and ${{e}^{x}}$ is an exponential function. So, according to the ILATE rule we have to assume x as the function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and ${{e}^{x}}$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$. Here, ILATE stands for
I – Inverse trigonometric function
L – Logarithmic function
A – Algebraic function
T – Trigonometric function
E – Exponential function
So, the numbering of the functions is done according to the order of appearance in the above list.
Now to calculate the integral apply the formula $\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ and substitute the limits. Here, \[{{f}_{1}}'\left( x \right)=\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right) \right)\]. So applying the formula for $x{{e}^{x}}$ in equation (i), we get
\[\begin{align}
& \Rightarrow I=\left[ x\int{{{e}^{x}}dx} \right]_{0}^{1}-\int\limits_{0}^{1}{\dfrac{dx}{dx}\left( \int{{{e}^{x}}dx} \right)dx}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=\left[ x{{e}^{x}} \right]_{0}^{1}-\int\limits_{0}^{1}{{{e}^{x}}dx}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=\left[ x{{e}^{x}} \right]_{0}^{1}-\left[ {{e}^{x}} \right]_{0}^{1}+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
\end{align}\]
Substituting the limits, we get
\[\begin{align}
& \Rightarrow I=\left[ 1{{e}^{1}}-0{{e}^{0}} \right]-\left[ {{e}^{1}}-{{e}^{0}} \right]+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I={{e}^{1}}-\left[ {{e}^{1}}-1 \right]+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=e-e+1+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
& \Rightarrow I=1+\dfrac{4}{\pi }\left[ 1-\dfrac{1}{\sqrt{2}} \right] \\
\end{align}\]
Note: One may note that whenever we have to calculate the integral of products of two different functions we have to apply integration by parts method and numbering should be done according to the ILATE rule. So, you must remember the ILATE rule and the formula used for the integration by parts method to solve the above questions. Remember the basic formulas of integration of functions like ${{e}^{x}},\sin x,\cos x$ etc…
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
