
Evaluate the definite integral given as \[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\].
Answer
514.2k+ views
Hint: We start solving the problem by recalling the properties of modulus function and we write functions for $\left| x-2 \right|$, $\left| x-3 \right|$ and $\left| x-5 \right|$ in the intervals that were present as limits for definite integral. We divide the definite integral into two or more parts based on the modulus functions obtained. We substitute the functions obtained in the place of modulus functions in integral. Now, we do the integration and substitute the limits to get the required value
Complete step-by-step answer:
According to the problem, we need to find the value of the definite integral \[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\] ---(1).
Let us first learn about the properties of modulus function. We know that the value of $\left| x-a \right|$ varies as \[\left| x-a \right|=\left\{ \begin{matrix}
\left( x-a \right)\text{, for xa} \\
0\text{, for x=a} \\
-\left( x-a \right)\text{, for xa} \\
\end{matrix} \right.\].
Using the properties of $\left| x-a \right|$, we check the variations of functions $\left| x-2 \right|$, $\left| x-3 \right|$ and $\left| x-5 \right|$ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 2 and 5 i.e., $2We find the variation in function for $\left| x-2 \right|$ in the interval $2So, the function $\left| x-2 \right|$ is written as \[\left| x-2 \right|=\left\{ \left( x-2 \right)\text{, for }2Now, we find the variation in function for $\left| x-3 \right|$ in the interval $2So, the function $\left| x-3 \right|$ is written as \[\left| x-3 \right|=\left\{ \begin{matrix}
-\left( x-3 \right),\text{ for }2 \left( x-3 \right),\text{ for }3\end{matrix} \right.\] ---(3).
Now, we find the variation in function for $\left| x-5 \right|$ in the interval $2So, the function $\left| x-5 \right|$ is written as \[\left| x-5 \right|=\left\{ -\left( x-5 \right),\text{ for }2We know that for $aNow, we divide the given definite integral into two intervals as shown below:
\[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx+\int\limits_{3}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\].
Now, we use the functions that we have obtained in equation (2), (3) and (4) in the given definite integral.
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ \left( x-2 \right)-\left( x-3 \right)-\left( x-5 \right) \right]}dx+\int\limits_{3}^{5}{\left[ \left( x-2 \right)+\left( x-3 \right)-\left( x-5 \right) \right]}dx\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ x-2-x+3-x+5 \right]}dx+\int\limits_{3}^{5}{\left[ x-2+x-3-x+5 \right]}dx\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ -x+6 \right]}dx+\int\limits_{3}^{5}{\left[ x \right]}dx\]---(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left. \dfrac{-{{\left( 6-x \right)}^{2}}}{2} \right|_{2}^{3}+\left. \dfrac{{{x}^{2}}}{2} \right|_{3}^{5}\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-{{\left( 6-3 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 6-2 \right)}^{2}}}{2} \right)+\left( \dfrac{{{5}^{2}}}{2} \right)-\left( \dfrac{{{3}^{2}}}{2} \right)\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-9}{2} \right)+\left( \dfrac{16}{2} \right)+\left( \dfrac{25}{2} \right)-\left( \dfrac{9}{2} \right)\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-9+16+25-9}{2} \right)\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{23}{2} \right)\].
∴ We have got the value of definite integral \[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\] as \[\left( \dfrac{23}{2} \right)\].
Note: We should not take $\left[ {} \right]$ as the greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 2 to 5 as the functions are changing. We should not make mistakes or confuse ourselves with the sign changes that were present while integrating.
Complete step-by-step answer:
According to the problem, we need to find the value of the definite integral \[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\] ---(1).
Let us first learn about the properties of modulus function. We know that the value of $\left| x-a \right|$ varies as \[\left| x-a \right|=\left\{ \begin{matrix}
\left( x-a \right)\text{, for xa} \\
0\text{, for x=a} \\
-\left( x-a \right)\text{, for xa} \\
\end{matrix} \right.\].
Using the properties of $\left| x-a \right|$, we check the variations of functions $\left| x-2 \right|$, $\left| x-3 \right|$ and $\left| x-5 \right|$ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 2 and 5 i.e., $2
-\left( x-3 \right),\text{ for }2
Now, we find the variation in function for $\left| x-5 \right|$ in the interval $2
\[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx+\int\limits_{3}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\].
Now, we use the functions that we have obtained in equation (2), (3) and (4) in the given definite integral.
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ \left( x-2 \right)-\left( x-3 \right)-\left( x-5 \right) \right]}dx+\int\limits_{3}^{5}{\left[ \left( x-2 \right)+\left( x-3 \right)-\left( x-5 \right) \right]}dx\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ x-2-x+3-x+5 \right]}dx+\int\limits_{3}^{5}{\left[ x-2+x-3-x+5 \right]}dx\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\int\limits_{2}^{3}{\left[ -x+6 \right]}dx+\int\limits_{3}^{5}{\left[ x \right]}dx\]---(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left. \dfrac{-{{\left( 6-x \right)}^{2}}}{2} \right|_{2}^{3}+\left. \dfrac{{{x}^{2}}}{2} \right|_{3}^{5}\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-{{\left( 6-3 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 6-2 \right)}^{2}}}{2} \right)+\left( \dfrac{{{5}^{2}}}{2} \right)-\left( \dfrac{{{3}^{2}}}{2} \right)\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-9}{2} \right)+\left( \dfrac{16}{2} \right)+\left( \dfrac{25}{2} \right)-\left( \dfrac{9}{2} \right)\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{-9+16+25-9}{2} \right)\].
\[\Rightarrow \int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx=\left( \dfrac{23}{2} \right)\].
∴ We have got the value of definite integral \[\int\limits_{2}^{5}{\left[ \left| x-2 \right|+\left| x-3 \right|+\left| x-5 \right| \right]}dx\] as \[\left( \dfrac{23}{2} \right)\].
Note: We should not take $\left[ {} \right]$ as the greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 2 to 5 as the functions are changing. We should not make mistakes or confuse ourselves with the sign changes that were present while integrating.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
