
How do you evaluate $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ ?
Answer
531.9k+ views
Hint: Here we will be equating our given trigonometric value to an unknown variable $ x $ and move $ \tan $ to the right hand side of the equation. The tan will become $ {\tan ^{ - 1}} $ and later we will be changing $ {\sin ^{ - 1}} $ into tan-1 for equating left hand side and right hand side.
Complete step-by-step answer:
Let $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ be equal to $ x $ ,
$ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = x $
Now taking tan to right side, it will become $ {\tan ^{ - 1}} $ ,
$ \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = {\tan ^{ - 1}}x $ , let this be equation $ 1 $
Now solving left hand side using the identity $ {\sin ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right) $ we will have, here $ x = \dfrac{2}{3} $
$ {\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - {{(\dfrac{2}{3})}^2}} }}} \right) $ ,
Squaring $ \dfrac{2}{3} $ inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - (\dfrac{4}{9})} }}} \right)\]
Taking the L.C.M inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{{9 - 4}}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{5}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 5 }}} \right)\]
Now putting this value of \[{\sin ^{ - 1}}(\dfrac{2}{3})\]in equation $ 1 $ will give us,
$ {\tan ^{ - 1}}(\dfrac{2}{{\sqrt 5 }}) = {\tan ^{ - 1}}x $
As $ {\tan ^{ - 1}} $ is at both sides, hence it will get cancel and we will get our value of x as $ \dfrac{2}{{\sqrt 5 }} $ and this is equal to $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ .
So, $ \dfrac{2}{{\sqrt 5 }} $ is our desired answer.\[\]
So, the correct answer is “ $ \dfrac{2}{{\sqrt 5 }} $ ”.
Note: While moving the trigonometric terms from left hand side to right side or vice versa one should pay keen attention to the change in the trigonometric forms as here tan was changed into $ {\tan ^{ - 1}} $ .
Complete step-by-step answer:
Let $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ be equal to $ x $ ,
$ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = x $
Now taking tan to right side, it will become $ {\tan ^{ - 1}} $ ,
$ \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = {\tan ^{ - 1}}x $ , let this be equation $ 1 $
Now solving left hand side using the identity $ {\sin ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right) $ we will have, here $ x = \dfrac{2}{3} $
$ {\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - {{(\dfrac{2}{3})}^2}} }}} \right) $ ,
Squaring $ \dfrac{2}{3} $ inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - (\dfrac{4}{9})} }}} \right)\]
Taking the L.C.M inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{{9 - 4}}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{5}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 5 }}} \right)\]
Now putting this value of \[{\sin ^{ - 1}}(\dfrac{2}{3})\]in equation $ 1 $ will give us,
$ {\tan ^{ - 1}}(\dfrac{2}{{\sqrt 5 }}) = {\tan ^{ - 1}}x $
As $ {\tan ^{ - 1}} $ is at both sides, hence it will get cancel and we will get our value of x as $ \dfrac{2}{{\sqrt 5 }} $ and this is equal to $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ .
So, $ \dfrac{2}{{\sqrt 5 }} $ is our desired answer.\[\]
So, the correct answer is “ $ \dfrac{2}{{\sqrt 5 }} $ ”.
Note: While moving the trigonometric terms from left hand side to right side or vice versa one should pay keen attention to the change in the trigonometric forms as here tan was changed into $ {\tan ^{ - 1}} $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

