
How do you evaluate $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ ?
Answer
520.2k+ views
Hint: Here we will be equating our given trigonometric value to an unknown variable $ x $ and move $ \tan $ to the right hand side of the equation. The tan will become $ {\tan ^{ - 1}} $ and later we will be changing $ {\sin ^{ - 1}} $ into tan-1 for equating left hand side and right hand side.
Complete step-by-step answer:
Let $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ be equal to $ x $ ,
$ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = x $
Now taking tan to right side, it will become $ {\tan ^{ - 1}} $ ,
$ \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = {\tan ^{ - 1}}x $ , let this be equation $ 1 $
Now solving left hand side using the identity $ {\sin ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right) $ we will have, here $ x = \dfrac{2}{3} $
$ {\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - {{(\dfrac{2}{3})}^2}} }}} \right) $ ,
Squaring $ \dfrac{2}{3} $ inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - (\dfrac{4}{9})} }}} \right)\]
Taking the L.C.M inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{{9 - 4}}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{5}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 5 }}} \right)\]
Now putting this value of \[{\sin ^{ - 1}}(\dfrac{2}{3})\]in equation $ 1 $ will give us,
$ {\tan ^{ - 1}}(\dfrac{2}{{\sqrt 5 }}) = {\tan ^{ - 1}}x $
As $ {\tan ^{ - 1}} $ is at both sides, hence it will get cancel and we will get our value of x as $ \dfrac{2}{{\sqrt 5 }} $ and this is equal to $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ .
So, $ \dfrac{2}{{\sqrt 5 }} $ is our desired answer.\[\]
So, the correct answer is “ $ \dfrac{2}{{\sqrt 5 }} $ ”.
Note: While moving the trigonometric terms from left hand side to right side or vice versa one should pay keen attention to the change in the trigonometric forms as here tan was changed into $ {\tan ^{ - 1}} $ .
Complete step-by-step answer:
Let $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ be equal to $ x $ ,
$ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = x $
Now taking tan to right side, it will become $ {\tan ^{ - 1}} $ ,
$ \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) = {\tan ^{ - 1}}x $ , let this be equation $ 1 $
Now solving left hand side using the identity $ {\sin ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right) $ we will have, here $ x = \dfrac{2}{3} $
$ {\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - {{(\dfrac{2}{3})}^2}} }}} \right) $ ,
Squaring $ \dfrac{2}{3} $ inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {1 - (\dfrac{4}{9})} }}} \right)\]
Taking the L.C.M inside the root,
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{{9 - 4}}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\sqrt {\dfrac{5}{9}} }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}} \right)\]
\[{\sin ^{ - 1}}(\dfrac{2}{3}) = {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 5 }}} \right)\]
Now putting this value of \[{\sin ^{ - 1}}(\dfrac{2}{3})\]in equation $ 1 $ will give us,
$ {\tan ^{ - 1}}(\dfrac{2}{{\sqrt 5 }}) = {\tan ^{ - 1}}x $
As $ {\tan ^{ - 1}} $ is at both sides, hence it will get cancel and we will get our value of x as $ \dfrac{2}{{\sqrt 5 }} $ and this is equal to $ \tan \left( {{{\sin }^{ - 1}}\left( {\dfrac{2}{3}} \right)} \right) $ .
So, $ \dfrac{2}{{\sqrt 5 }} $ is our desired answer.\[\]
So, the correct answer is “ $ \dfrac{2}{{\sqrt 5 }} $ ”.
Note: While moving the trigonometric terms from left hand side to right side or vice versa one should pay keen attention to the change in the trigonometric forms as here tan was changed into $ {\tan ^{ - 1}} $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

