
Evaluate \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \]
A. \[2\tan 2\theta \]
B. \[2\cot \theta \]
C. \[\tan 2\theta \]
D. \[\cot 2\theta \]
Answer
499.2k+ views
Hint:We can solve this using the tangent sum and difference formula. That is we have tangent sum formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\] and tangent difference formula \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. After applying the formula we use algebraic identities \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] to simplify it.
Complete step by step answer:
Given \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) - - - (1)\]
Now take \[\tan \left( {\dfrac{\pi }{4} + \theta } \right)\] and applying tangent sum formula that is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\].
Then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - - - (2)\]
Now similarly take \[\tan \left( {\dfrac{\pi }{4} - \theta } \right)\] and apply the tangent difference formula that is \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Then we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \theta }}{{1 + \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} - - - - (3)\]
Now substituting equation (2) and (3) in (1) we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
Taking LCM and simplifying we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {\left( {1 + \tan \theta } \right)\left( {1 + \tan \theta } \right)} \right] - \left[ {\left( {1 - \tan \theta } \right)\left( {1 - \tan \theta } \right)} \right]}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}}\]
We know the \[(a - b)(a + b) = {a^2} - {b^2}\].
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{\left[ {{{\left( {1 + \tan \theta } \right)}^2}} \right] - \left[ {{{\left( {1 - \tan \theta } \right)}^2}} \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Now we use \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {{1^2} + {{\tan }^2}\theta + 2\tan \theta } \right] - \left[ {{1^2} + {{\tan }^2}\theta - 2\tan \theta } \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Expanding the brackets we have,
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + {{\tan }^2}\theta + 2\tan \theta - 1 - {{\tan }^2}\theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2\tan \theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{4\tan \theta }}{{1 - {{\tan }^2}\theta }}\].
This is the simplified form but it is not matching with the given option. So we need to simply this further,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {2\tan \theta } \right)}}{{1 - {{\tan }^2}\theta }}\]
We can write \[2\tan \theta = \tan \theta + \tan \theta \] and also \[{\tan ^2}\theta = \tan \theta \tan \theta \].
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}\]
If we observe we have a tangent sum rule,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \left( {\dfrac{{\left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}} \right)\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \tan \left( {\theta + \theta } \right)\]
\[\therefore \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2\tan \left( {2\theta } \right)\].
Hence the correct answer is option A.
Note:We also have sine and cosine sum and difference formulas. We have sine sum and difference formula that is \[\sin \left( {A + B} \right) = \sin A.\cos B + \cos A.\sin B\] and \[\sin \left( {A - B} \right) = \sin A.\cos B - \cos A.\sin B\]. The cosine sum and difference formula is \[\cos (A + B) = \cos A.\cos B - \sin A.\sin B\] and \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]. We use them depending on the given problem. In above while expanding the brackets we have to be careful regarding the negative sign. We know that the product of two negative numbers results in a positive number. Also the product of positive (negative) numbers and negative (positive) numbers results in negative numbers.
Complete step by step answer:
Given \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) - - - (1)\]
Now take \[\tan \left( {\dfrac{\pi }{4} + \theta } \right)\] and applying tangent sum formula that is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\].
Then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - - - (2)\]
Now similarly take \[\tan \left( {\dfrac{\pi }{4} - \theta } \right)\] and apply the tangent difference formula that is \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Then we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \theta }}{{1 + \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} - - - - (3)\]
Now substituting equation (2) and (3) in (1) we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
Taking LCM and simplifying we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {\left( {1 + \tan \theta } \right)\left( {1 + \tan \theta } \right)} \right] - \left[ {\left( {1 - \tan \theta } \right)\left( {1 - \tan \theta } \right)} \right]}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}}\]
We know the \[(a - b)(a + b) = {a^2} - {b^2}\].
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{\left[ {{{\left( {1 + \tan \theta } \right)}^2}} \right] - \left[ {{{\left( {1 - \tan \theta } \right)}^2}} \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Now we use \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {{1^2} + {{\tan }^2}\theta + 2\tan \theta } \right] - \left[ {{1^2} + {{\tan }^2}\theta - 2\tan \theta } \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Expanding the brackets we have,
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + {{\tan }^2}\theta + 2\tan \theta - 1 - {{\tan }^2}\theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2\tan \theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{4\tan \theta }}{{1 - {{\tan }^2}\theta }}\].
This is the simplified form but it is not matching with the given option. So we need to simply this further,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {2\tan \theta } \right)}}{{1 - {{\tan }^2}\theta }}\]
We can write \[2\tan \theta = \tan \theta + \tan \theta \] and also \[{\tan ^2}\theta = \tan \theta \tan \theta \].
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}\]
If we observe we have a tangent sum rule,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \left( {\dfrac{{\left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}} \right)\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \tan \left( {\theta + \theta } \right)\]
\[\therefore \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2\tan \left( {2\theta } \right)\].
Hence the correct answer is option A.
Note:We also have sine and cosine sum and difference formulas. We have sine sum and difference formula that is \[\sin \left( {A + B} \right) = \sin A.\cos B + \cos A.\sin B\] and \[\sin \left( {A - B} \right) = \sin A.\cos B - \cos A.\sin B\]. The cosine sum and difference formula is \[\cos (A + B) = \cos A.\cos B - \sin A.\sin B\] and \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]. We use them depending on the given problem. In above while expanding the brackets we have to be careful regarding the negative sign. We know that the product of two negative numbers results in a positive number. Also the product of positive (negative) numbers and negative (positive) numbers results in negative numbers.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

