
Evaluate \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \]
A. \[2\tan 2\theta \]
B. \[2\cot \theta \]
C. \[\tan 2\theta \]
D. \[\cot 2\theta \]
Answer
417.3k+ views
Hint:We can solve this using the tangent sum and difference formula. That is we have tangent sum formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\] and tangent difference formula \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. After applying the formula we use algebraic identities \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] to simplify it.
Complete step by step answer:
Given \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) - - - (1)\]
Now take \[\tan \left( {\dfrac{\pi }{4} + \theta } \right)\] and applying tangent sum formula that is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\].
Then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - - - (2)\]
Now similarly take \[\tan \left( {\dfrac{\pi }{4} - \theta } \right)\] and apply the tangent difference formula that is \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Then we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \theta }}{{1 + \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} - - - - (3)\]
Now substituting equation (2) and (3) in (1) we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
Taking LCM and simplifying we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {\left( {1 + \tan \theta } \right)\left( {1 + \tan \theta } \right)} \right] - \left[ {\left( {1 - \tan \theta } \right)\left( {1 - \tan \theta } \right)} \right]}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}}\]
We know the \[(a - b)(a + b) = {a^2} - {b^2}\].
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{\left[ {{{\left( {1 + \tan \theta } \right)}^2}} \right] - \left[ {{{\left( {1 - \tan \theta } \right)}^2}} \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Now we use \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {{1^2} + {{\tan }^2}\theta + 2\tan \theta } \right] - \left[ {{1^2} + {{\tan }^2}\theta - 2\tan \theta } \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Expanding the brackets we have,
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + {{\tan }^2}\theta + 2\tan \theta - 1 - {{\tan }^2}\theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2\tan \theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{4\tan \theta }}{{1 - {{\tan }^2}\theta }}\].
This is the simplified form but it is not matching with the given option. So we need to simply this further,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {2\tan \theta } \right)}}{{1 - {{\tan }^2}\theta }}\]
We can write \[2\tan \theta = \tan \theta + \tan \theta \] and also \[{\tan ^2}\theta = \tan \theta \tan \theta \].
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}\]
If we observe we have a tangent sum rule,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \left( {\dfrac{{\left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}} \right)\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \tan \left( {\theta + \theta } \right)\]
\[\therefore \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2\tan \left( {2\theta } \right)\].
Hence the correct answer is option A.
Note:We also have sine and cosine sum and difference formulas. We have sine sum and difference formula that is \[\sin \left( {A + B} \right) = \sin A.\cos B + \cos A.\sin B\] and \[\sin \left( {A - B} \right) = \sin A.\cos B - \cos A.\sin B\]. The cosine sum and difference formula is \[\cos (A + B) = \cos A.\cos B - \sin A.\sin B\] and \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]. We use them depending on the given problem. In above while expanding the brackets we have to be careful regarding the negative sign. We know that the product of two negative numbers results in a positive number. Also the product of positive (negative) numbers and negative (positive) numbers results in negative numbers.
Complete step by step answer:
Given \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) - - - (1)\]
Now take \[\tan \left( {\dfrac{\pi }{4} + \theta } \right)\] and applying tangent sum formula that is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\].
Then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - - - (2)\]
Now similarly take \[\tan \left( {\dfrac{\pi }{4} - \theta } \right)\] and apply the tangent difference formula that is \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Then we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \theta }}{{1 + \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}\]
We know \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] then
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} - - - - (3)\]
Now substituting equation (2) and (3) in (1) we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}\]
Taking LCM and simplifying we have,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {\left( {1 + \tan \theta } \right)\left( {1 + \tan \theta } \right)} \right] - \left[ {\left( {1 - \tan \theta } \right)\left( {1 - \tan \theta } \right)} \right]}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}}\]
We know the \[(a - b)(a + b) = {a^2} - {b^2}\].
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{\left[ {{{\left( {1 + \tan \theta } \right)}^2}} \right] - \left[ {{{\left( {1 - \tan \theta } \right)}^2}} \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Now we use \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {{1^2} + {{\tan }^2}\theta + 2\tan \theta } \right] - \left[ {{1^2} + {{\tan }^2}\theta - 2\tan \theta } \right]}}{{{1^2} - {{\tan }^2}\theta }}\]
Expanding the brackets we have,
\[ \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + {{\tan }^2}\theta + 2\tan \theta - 1 - {{\tan }^2}\theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2\tan \theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{4\tan \theta }}{{1 - {{\tan }^2}\theta }}\].
This is the simplified form but it is not matching with the given option. So we need to simply this further,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {2\tan \theta } \right)}}{{1 - {{\tan }^2}\theta }}\]
We can write \[2\tan \theta = \tan \theta + \tan \theta \] and also \[{\tan ^2}\theta = \tan \theta \tan \theta \].
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}\]
If we observe we have a tangent sum rule,
\[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \left( {\dfrac{{\left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}} \right)\]
\[\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \tan \left( {\theta + \theta } \right)\]
\[\therefore \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2\tan \left( {2\theta } \right)\].
Hence the correct answer is option A.
Note:We also have sine and cosine sum and difference formulas. We have sine sum and difference formula that is \[\sin \left( {A + B} \right) = \sin A.\cos B + \cos A.\sin B\] and \[\sin \left( {A - B} \right) = \sin A.\cos B - \cos A.\sin B\]. The cosine sum and difference formula is \[\cos (A + B) = \cos A.\cos B - \sin A.\sin B\] and \[\cos (A - B) = \cos A.\cos B + \sin A.\sin B\]. We use them depending on the given problem. In above while expanding the brackets we have to be careful regarding the negative sign. We know that the product of two negative numbers results in a positive number. Also the product of positive (negative) numbers and negative (positive) numbers results in negative numbers.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
