
How do I evaluate \[\tan \left( \dfrac{\pi }{3} \right)\] without using a calculator?
Answer
542.7k+ views
Hint: To solve this equation, we need to know the relationship between the \[\tan x,\sin x\And \cos x\], which states that, \[\tan x=\dfrac{\sin x}{\cos x}\]. We will use this relation to find the value of \[\tan \left( \dfrac{\pi }{3} \right)\]. Also, we should know the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\].
Complete step by step answer:
We know that the trigonometric ratios \[\tan x,\sin x\And \cos x\] are related to each other in the following way, \[\tan x=\dfrac{\sin x}{\cos x}\]. As \[\dfrac{\pi }{3}\] is a special angel, we know the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\]. The value of \[\sin \left( \dfrac{\pi }{3} \right)\] equals \[\dfrac{\sqrt{3}}{2}\], and the value of \[\cos \left( \dfrac{\pi }{3} \right)\] is \[\dfrac{1}{2}\].
Using the relationship between the ratios, and these values, we can find the value of \[\tan \left( \dfrac{\pi }{3} \right)\] as follows
\[\tan x=\dfrac{\sin x}{\cos x}\]
Substituting \[x=\dfrac{\pi }{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{3} \right)}\]
Substituting the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\] in the above equation, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}\]
As the fraction in the numerator and the fraction in the denominator have the same denominator, we can cancel it out, by doing this we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Thus, we get the value of \[\tan \left( \dfrac{\pi }{3} \right)\].
Note:
We can also find the value of \[\tan \left( \dfrac{\pi }{3} \right)\], if we know the value of the tangent of its half, that is the value of \[\tan \left( \dfrac{\pi }{6} \right)\]. The value of \[\tan \left( \dfrac{\pi }{6} \right)\] is \[\dfrac{1}{\sqrt{3}}\].
We know the formula for \[\tan (2x)\] is \[\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]. As \[\dfrac{\pi }{3}\] is twice of the \[\dfrac{\pi }{6}\], we can use this formula to calculate the value of \[\tan \left( \dfrac{\pi }{3} \right)\], using the value of \[\tan \left( \dfrac{\pi }{6} \right)\], as follows
\[\tan (2x)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]
Substitute \[x=\dfrac{\pi }{6}\] in the above formula, we get
\[\begin{align}
& \Rightarrow \tan \left( 2\left( \dfrac{\pi }{6} \right) \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
& \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
\end{align}\]
Substituting the value of \[\tan \left( \dfrac{\pi }{6} \right)\] as \[\dfrac{1}{\sqrt{3}}\] in the above formula, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}\]
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}\]
To make the denominator of the fraction in numerator and denominator same, we multiply and divide the fraction in the numerator by \[\sqrt{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}{\dfrac{2}{3}}=\dfrac{\dfrac{2\sqrt{3}}{3}}{\dfrac{2}{3}}\]
Canceling the common factors from numerator and denominator, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Complete step by step answer:
We know that the trigonometric ratios \[\tan x,\sin x\And \cos x\] are related to each other in the following way, \[\tan x=\dfrac{\sin x}{\cos x}\]. As \[\dfrac{\pi }{3}\] is a special angel, we know the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\]. The value of \[\sin \left( \dfrac{\pi }{3} \right)\] equals \[\dfrac{\sqrt{3}}{2}\], and the value of \[\cos \left( \dfrac{\pi }{3} \right)\] is \[\dfrac{1}{2}\].
Using the relationship between the ratios, and these values, we can find the value of \[\tan \left( \dfrac{\pi }{3} \right)\] as follows
\[\tan x=\dfrac{\sin x}{\cos x}\]
Substituting \[x=\dfrac{\pi }{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{3} \right)}\]
Substituting the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\] in the above equation, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}\]
As the fraction in the numerator and the fraction in the denominator have the same denominator, we can cancel it out, by doing this we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Thus, we get the value of \[\tan \left( \dfrac{\pi }{3} \right)\].
Note:
We can also find the value of \[\tan \left( \dfrac{\pi }{3} \right)\], if we know the value of the tangent of its half, that is the value of \[\tan \left( \dfrac{\pi }{6} \right)\]. The value of \[\tan \left( \dfrac{\pi }{6} \right)\] is \[\dfrac{1}{\sqrt{3}}\].
We know the formula for \[\tan (2x)\] is \[\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]. As \[\dfrac{\pi }{3}\] is twice of the \[\dfrac{\pi }{6}\], we can use this formula to calculate the value of \[\tan \left( \dfrac{\pi }{3} \right)\], using the value of \[\tan \left( \dfrac{\pi }{6} \right)\], as follows
\[\tan (2x)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]
Substitute \[x=\dfrac{\pi }{6}\] in the above formula, we get
\[\begin{align}
& \Rightarrow \tan \left( 2\left( \dfrac{\pi }{6} \right) \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
& \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
\end{align}\]
Substituting the value of \[\tan \left( \dfrac{\pi }{6} \right)\] as \[\dfrac{1}{\sqrt{3}}\] in the above formula, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}\]
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}\]
To make the denominator of the fraction in numerator and denominator same, we multiply and divide the fraction in the numerator by \[\sqrt{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}{\dfrac{2}{3}}=\dfrac{\dfrac{2\sqrt{3}}{3}}{\dfrac{2}{3}}\]
Canceling the common factors from numerator and denominator, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

