
How do I evaluate \[\tan \left( \dfrac{\pi }{3} \right)\] without using a calculator?
Answer
557.4k+ views
Hint: To solve this equation, we need to know the relationship between the \[\tan x,\sin x\And \cos x\], which states that, \[\tan x=\dfrac{\sin x}{\cos x}\]. We will use this relation to find the value of \[\tan \left( \dfrac{\pi }{3} \right)\]. Also, we should know the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\].
Complete step by step answer:
We know that the trigonometric ratios \[\tan x,\sin x\And \cos x\] are related to each other in the following way, \[\tan x=\dfrac{\sin x}{\cos x}\]. As \[\dfrac{\pi }{3}\] is a special angel, we know the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\]. The value of \[\sin \left( \dfrac{\pi }{3} \right)\] equals \[\dfrac{\sqrt{3}}{2}\], and the value of \[\cos \left( \dfrac{\pi }{3} \right)\] is \[\dfrac{1}{2}\].
Using the relationship between the ratios, and these values, we can find the value of \[\tan \left( \dfrac{\pi }{3} \right)\] as follows
\[\tan x=\dfrac{\sin x}{\cos x}\]
Substituting \[x=\dfrac{\pi }{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{3} \right)}\]
Substituting the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\] in the above equation, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}\]
As the fraction in the numerator and the fraction in the denominator have the same denominator, we can cancel it out, by doing this we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Thus, we get the value of \[\tan \left( \dfrac{\pi }{3} \right)\].
Note:
We can also find the value of \[\tan \left( \dfrac{\pi }{3} \right)\], if we know the value of the tangent of its half, that is the value of \[\tan \left( \dfrac{\pi }{6} \right)\]. The value of \[\tan \left( \dfrac{\pi }{6} \right)\] is \[\dfrac{1}{\sqrt{3}}\].
We know the formula for \[\tan (2x)\] is \[\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]. As \[\dfrac{\pi }{3}\] is twice of the \[\dfrac{\pi }{6}\], we can use this formula to calculate the value of \[\tan \left( \dfrac{\pi }{3} \right)\], using the value of \[\tan \left( \dfrac{\pi }{6} \right)\], as follows
\[\tan (2x)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]
Substitute \[x=\dfrac{\pi }{6}\] in the above formula, we get
\[\begin{align}
& \Rightarrow \tan \left( 2\left( \dfrac{\pi }{6} \right) \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
& \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
\end{align}\]
Substituting the value of \[\tan \left( \dfrac{\pi }{6} \right)\] as \[\dfrac{1}{\sqrt{3}}\] in the above formula, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}\]
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}\]
To make the denominator of the fraction in numerator and denominator same, we multiply and divide the fraction in the numerator by \[\sqrt{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}{\dfrac{2}{3}}=\dfrac{\dfrac{2\sqrt{3}}{3}}{\dfrac{2}{3}}\]
Canceling the common factors from numerator and denominator, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Complete step by step answer:
We know that the trigonometric ratios \[\tan x,\sin x\And \cos x\] are related to each other in the following way, \[\tan x=\dfrac{\sin x}{\cos x}\]. As \[\dfrac{\pi }{3}\] is a special angel, we know the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\]. The value of \[\sin \left( \dfrac{\pi }{3} \right)\] equals \[\dfrac{\sqrt{3}}{2}\], and the value of \[\cos \left( \dfrac{\pi }{3} \right)\] is \[\dfrac{1}{2}\].
Using the relationship between the ratios, and these values, we can find the value of \[\tan \left( \dfrac{\pi }{3} \right)\] as follows
\[\tan x=\dfrac{\sin x}{\cos x}\]
Substituting \[x=\dfrac{\pi }{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{3} \right)}\]
Substituting the values of \[\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right)\] in the above equation, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}\]
As the fraction in the numerator and the fraction in the denominator have the same denominator, we can cancel it out, by doing this we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Thus, we get the value of \[\tan \left( \dfrac{\pi }{3} \right)\].
Note:
We can also find the value of \[\tan \left( \dfrac{\pi }{3} \right)\], if we know the value of the tangent of its half, that is the value of \[\tan \left( \dfrac{\pi }{6} \right)\]. The value of \[\tan \left( \dfrac{\pi }{6} \right)\] is \[\dfrac{1}{\sqrt{3}}\].
We know the formula for \[\tan (2x)\] is \[\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]. As \[\dfrac{\pi }{3}\] is twice of the \[\dfrac{\pi }{6}\], we can use this formula to calculate the value of \[\tan \left( \dfrac{\pi }{3} \right)\], using the value of \[\tan \left( \dfrac{\pi }{6} \right)\], as follows
\[\tan (2x)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}\]
Substitute \[x=\dfrac{\pi }{6}\] in the above formula, we get
\[\begin{align}
& \Rightarrow \tan \left( 2\left( \dfrac{\pi }{6} \right) \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
& \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\
\end{align}\]
Substituting the value of \[\tan \left( \dfrac{\pi }{6} \right)\] as \[\dfrac{1}{\sqrt{3}}\] in the above formula, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}\]
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}\]
To make the denominator of the fraction in numerator and denominator same, we multiply and divide the fraction in the numerator by \[\sqrt{3}\], we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}{\dfrac{2}{3}}=\dfrac{\dfrac{2\sqrt{3}}{3}}{\dfrac{2}{3}}\]
Canceling the common factors from numerator and denominator, we get
\[\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

