
How do you evaluate $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$?
Answer
552k+ views
Hint: First express the expression in terms of sine and cosine form using the formula $\tan x=\dfrac{\sin x}{\cos x}$. Then simplify the numerator and the denominator by taking them separately. For numerator use the formula $\sin \left( \arcsin \left( x \right) \right)=x$and for the denominator use $\cos x=\sqrt{1-{{\sin }^{2}}x}$ and ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{x}^{2}}$. After getting simplified values, bring the numerator and the denominator together and do the necessary calculation to obtain the required solution.
Complete step by step solution:
As we know, $\tan x=\dfrac{\sin x}{\cos x}$
Now, considering our question $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$
It can be written as $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, $\sin \left( \arcsin \left( x \right) \right)=x$
So, $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}$
For the denominator part:
As we know
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\
\end{align}$
So, $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
Again, we know ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}$
So, ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}$
Putting the value of ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)$in $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$, we get
$\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}$
Bringing the numerator and the denominator together, now our expression becomes
$\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}$
This is the required solution of the given question.
Note: We know, ${{\sin }^{2}}x$ can be written as ${{\left( \sin x \right)}^{2}}$. Similarly we can write ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)$ as ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}$. Again as we know, the value of $\sin \left( \arcsin \left( x \right) \right)=x$ so, the value of ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}$, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.
Complete step by step solution:
As we know, $\tan x=\dfrac{\sin x}{\cos x}$
Now, considering our question $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$
It can be written as $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, $\sin \left( \arcsin \left( x \right) \right)=x$
So, $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}$
For the denominator part:
As we know
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\
\end{align}$
So, $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
Again, we know ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}$
So, ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}$
Putting the value of ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)$in $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$, we get
$\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}$
Bringing the numerator and the denominator together, now our expression becomes
$\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}$
This is the required solution of the given question.
Note: We know, ${{\sin }^{2}}x$ can be written as ${{\left( \sin x \right)}^{2}}$. Similarly we can write ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)$ as ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}$. Again as we know, the value of $\sin \left( \arcsin \left( x \right) \right)=x$ so, the value of ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}$, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

