
How do you evaluate $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$?
Answer
525.9k+ views
Hint: First express the expression in terms of sine and cosine form using the formula $\tan x=\dfrac{\sin x}{\cos x}$. Then simplify the numerator and the denominator by taking them separately. For numerator use the formula $\sin \left( \arcsin \left( x \right) \right)=x$and for the denominator use $\cos x=\sqrt{1-{{\sin }^{2}}x}$ and ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{x}^{2}}$. After getting simplified values, bring the numerator and the denominator together and do the necessary calculation to obtain the required solution.
Complete step by step solution:
As we know, $\tan x=\dfrac{\sin x}{\cos x}$
Now, considering our question $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$
It can be written as $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, $\sin \left( \arcsin \left( x \right) \right)=x$
So, $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}$
For the denominator part:
As we know
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\
\end{align}$
So, $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
Again, we know ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}$
So, ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}$
Putting the value of ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)$in $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$, we get
$\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}$
Bringing the numerator and the denominator together, now our expression becomes
$\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}$
This is the required solution of the given question.
Note: We know, ${{\sin }^{2}}x$ can be written as ${{\left( \sin x \right)}^{2}}$. Similarly we can write ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)$ as ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}$. Again as we know, the value of $\sin \left( \arcsin \left( x \right) \right)=x$ so, the value of ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}$, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.
Complete step by step solution:
As we know, $\tan x=\dfrac{\sin x}{\cos x}$
Now, considering our question $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$
It can be written as $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, $\sin \left( \arcsin \left( x \right) \right)=x$
So, $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}$
For the denominator part:
As we know
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\
\end{align}$
So, $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
Again, we know ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}$
So, ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}$
Putting the value of ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)$in $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$, we get
$\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}$
Bringing the numerator and the denominator together, now our expression becomes
$\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}$
This is the required solution of the given question.
Note: We know, ${{\sin }^{2}}x$ can be written as ${{\left( \sin x \right)}^{2}}$. Similarly we can write ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)$ as ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}$. Again as we know, the value of $\sin \left( \arcsin \left( x \right) \right)=x$ so, the value of ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}$, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

