
How do you evaluate $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$?
Answer
533.4k+ views
Hint: First express the expression in terms of sine and cosine form using the formula $\tan x=\dfrac{\sin x}{\cos x}$. Then simplify the numerator and the denominator by taking them separately. For numerator use the formula $\sin \left( \arcsin \left( x \right) \right)=x$and for the denominator use $\cos x=\sqrt{1-{{\sin }^{2}}x}$ and ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{x}^{2}}$. After getting simplified values, bring the numerator and the denominator together and do the necessary calculation to obtain the required solution.
Complete step by step solution:
As we know, $\tan x=\dfrac{\sin x}{\cos x}$
Now, considering our question $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$
It can be written as $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, $\sin \left( \arcsin \left( x \right) \right)=x$
So, $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}$
For the denominator part:
As we know
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\
\end{align}$
So, $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
Again, we know ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}$
So, ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}$
Putting the value of ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)$in $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$, we get
$\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}$
Bringing the numerator and the denominator together, now our expression becomes
$\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}$
This is the required solution of the given question.
Note: We know, ${{\sin }^{2}}x$ can be written as ${{\left( \sin x \right)}^{2}}$. Similarly we can write ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)$ as ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}$. Again as we know, the value of $\sin \left( \arcsin \left( x \right) \right)=x$ so, the value of ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}$, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.
Complete step by step solution:
As we know, $\tan x=\dfrac{\sin x}{\cos x}$
Now, considering our question $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)$
It can be written as $\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
From here, we have to simplify the numerator part and the denominator part separately.
For the numerator part:
As we know, $\sin \left( \arcsin \left( x \right) \right)=x$
So, $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{1}{3}$
For the denominator part:
As we know
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \Rightarrow \cos x=\sqrt{1-{{\sin }^{2}}x} \\
\end{align}$
So, $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)$ can be written as $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$
Again, we know ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)={{\left( x \right)}^{2}}={{x}^{2}}$
So, ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)={{\left( \dfrac{1}{3} \right)}^{2}}=\dfrac{1}{9}$
Putting the value of ${{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)$in $\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-{{\sin }^{2}}\left( \arcsin \left( \dfrac{1}{3} \right) \right)}$, we get
$\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{9-1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}$
Bringing the numerator and the denominator together, now our expression becomes
$\tan \left( \arcsin \left( \dfrac{1}{3} \right) \right)=\dfrac{\sin \left( \arcsin \left( \dfrac{1}{3} \right) \right)}{\cos \left( \arcsin \left( \dfrac{1}{3} \right) \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{1}{3}\times \dfrac{3}{2\sqrt{2}}=\dfrac{1}{2\sqrt{2}}$
This is the required solution of the given question.
Note: We know, ${{\sin }^{2}}x$ can be written as ${{\left( \sin x \right)}^{2}}$. Similarly we can write ${{\sin }^{2}}\left( \arcsin \left( x \right) \right)$ as ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}$. Again as we know, the value of $\sin \left( \arcsin \left( x \right) \right)=x$ so, the value of ${{\left[ \sin \left( \arcsin \left( x \right) \right) \right]}^{2}}={{\left( x \right)}^{2}}={{x}^{2}}$, which is used in this question. The above question should be solved by taking the numerator and the denominator separately to avoid errors and complex calculations.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

