
How do you evaluate sine, cosine, tangent of$-{{405}^{\circ }}$without using a calculator?
Answer
536.1k+ views
Hint: In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratio of two side lengths. The above given functions are trigonometric functions. The angles of sine, cosine, and tangent are the primary classification of functions of trigonometry. The trigonometric functions are the periodic functions. The smallest periodic cycle is $2\pi $ but for tangent and the cotangent it is$\pi $.
Complete step by step answer:
Now, we have to calculate the$\sin \left( -405 \right)$ ,$\cos \left( -405 \right)$ and$\tan \left( -405 \right)$ . Since they are periodic functions, it means they can be written as:
$\begin{align}
& \Rightarrow \sin \left( x+2n\pi \right)=\sin x \\
& \Rightarrow \cos \left( x+2n\pi \right)=\cos x \\
& \Rightarrow \tan \left( x+n\pi \right)=\tan x \\
\end{align}$
Where n is an integer.
To find the value of$\sin \left( -405 \right)$, as we know that period of sin is$2\pi $. So we write ${{405}^{\circ }}$ in terms of$\sin \left[ -\left( 360+45 \right) \right]$, we get
$\Rightarrow \sin \left[ -\left( 360+45 \right) \right]=\sin \left( -{{45}^{\circ }} \right)$
As we know very well$\sin \left( -\theta \right)=-\sin \theta $ , so we get
$\Rightarrow \sin \left( -{{45}^{\circ }} \right)=-\sin {{45}^{\circ }}$
And we also the value of $\sin {{45}^{\circ }}$ is$\dfrac{1}{\sqrt{2}}$ , then
\[\Rightarrow \sin \left( -{{405}^{\circ }} \right)=-\sin {{45}^{\circ }}=-\dfrac{1}{\sqrt{2}}\]
Similarly, to find the value of$\cos \left( -405 \right)$, as we know that period of cosine is $2\pi $.so we write${{405}^{\circ }}$in term of $\cos \left[ -\left( 360+45 \right) \right]$ , we get
$\Rightarrow \cos \left[ -\left( 360+45 \right) \right]=\cos \left( -{{45}^{\circ }} \right)$
And we know that $\cos \left( -\theta \right)=\cos \theta $ thus, we get
$\Rightarrow \cos \left( -{{405}^{\circ }} \right)=\cos \left( -{{45}^{\circ }} \right)=\cos {{45}^{\circ }}$
And we know the value of$\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}$ , we get
$\Rightarrow \cos \left( -{{405}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}$
Again to find the value of$\tan \left( -405 \right)$, since the period of tan is $n\pi $ where n is a constant.
And we also know we can write$\tan \left( -\theta \right)=\dfrac{\sin \left( -\theta \right)}{\cos \left( -\theta \right)}$ and we have been given that $\theta ={{405}^{\circ }}$and we already calculated the value of $\sin \left( -405 \right)$and$\cos \left( -405 \right)$, so now simply putting the value of these, we get
$\begin{align}
& \Rightarrow \tan \left( -{{405}^{\circ }} \right)=\dfrac{\sin \left( -{{405}^{\circ }} \right)}{\cos \left( -{{405}^{\circ }} \right)} \\
& \Rightarrow \tan \left( -{{405}^{\circ }} \right)=\dfrac{\left( -\dfrac{1}{\sqrt{2}} \right)}{\dfrac{1}{\sqrt{2}}} \\
& \Rightarrow \tan \left( -{{405}^{\circ }} \right)=-1 \\
\end{align}$
Note: To solve these types of questions we should always need to remember the trigonometric formulas and properties and the basic values of all the trigonometric functions. We should know the all the values of trigonometric function on some basic which usually use in any trigonometric question are${{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }},{{0}^{\circ }}$ .
Complete step by step answer:
Now, we have to calculate the$\sin \left( -405 \right)$ ,$\cos \left( -405 \right)$ and$\tan \left( -405 \right)$ . Since they are periodic functions, it means they can be written as:
$\begin{align}
& \Rightarrow \sin \left( x+2n\pi \right)=\sin x \\
& \Rightarrow \cos \left( x+2n\pi \right)=\cos x \\
& \Rightarrow \tan \left( x+n\pi \right)=\tan x \\
\end{align}$
Where n is an integer.
To find the value of$\sin \left( -405 \right)$, as we know that period of sin is$2\pi $. So we write ${{405}^{\circ }}$ in terms of$\sin \left[ -\left( 360+45 \right) \right]$, we get
$\Rightarrow \sin \left[ -\left( 360+45 \right) \right]=\sin \left( -{{45}^{\circ }} \right)$
As we know very well$\sin \left( -\theta \right)=-\sin \theta $ , so we get
$\Rightarrow \sin \left( -{{45}^{\circ }} \right)=-\sin {{45}^{\circ }}$
And we also the value of $\sin {{45}^{\circ }}$ is$\dfrac{1}{\sqrt{2}}$ , then
\[\Rightarrow \sin \left( -{{405}^{\circ }} \right)=-\sin {{45}^{\circ }}=-\dfrac{1}{\sqrt{2}}\]
Similarly, to find the value of$\cos \left( -405 \right)$, as we know that period of cosine is $2\pi $.so we write${{405}^{\circ }}$in term of $\cos \left[ -\left( 360+45 \right) \right]$ , we get
$\Rightarrow \cos \left[ -\left( 360+45 \right) \right]=\cos \left( -{{45}^{\circ }} \right)$
And we know that $\cos \left( -\theta \right)=\cos \theta $ thus, we get
$\Rightarrow \cos \left( -{{405}^{\circ }} \right)=\cos \left( -{{45}^{\circ }} \right)=\cos {{45}^{\circ }}$
And we know the value of$\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}$ , we get
$\Rightarrow \cos \left( -{{405}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}$
Again to find the value of$\tan \left( -405 \right)$, since the period of tan is $n\pi $ where n is a constant.
And we also know we can write$\tan \left( -\theta \right)=\dfrac{\sin \left( -\theta \right)}{\cos \left( -\theta \right)}$ and we have been given that $\theta ={{405}^{\circ }}$and we already calculated the value of $\sin \left( -405 \right)$and$\cos \left( -405 \right)$, so now simply putting the value of these, we get
$\begin{align}
& \Rightarrow \tan \left( -{{405}^{\circ }} \right)=\dfrac{\sin \left( -{{405}^{\circ }} \right)}{\cos \left( -{{405}^{\circ }} \right)} \\
& \Rightarrow \tan \left( -{{405}^{\circ }} \right)=\dfrac{\left( -\dfrac{1}{\sqrt{2}} \right)}{\dfrac{1}{\sqrt{2}}} \\
& \Rightarrow \tan \left( -{{405}^{\circ }} \right)=-1 \\
\end{align}$
Note: To solve these types of questions we should always need to remember the trigonometric formulas and properties and the basic values of all the trigonometric functions. We should know the all the values of trigonometric function on some basic which usually use in any trigonometric question are${{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }},{{0}^{\circ }}$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

