
How do you evaluate sine, cosine, tangent of $750^\circ$ without using a calculator?
Answer
530.7k+ views
Hint: Given an angle in degrees and we have to find the sine, cosine, and tangent of a particular measure without the help of the calculator. First, we will convert the given angle between the angle of value $0$ to $90^\circ $. Then, we will substitute the value of the trigonometric function for the measure of an angle. Then, compute the exact value of the required angle.
Formula used:
The reference angle for the angle $\theta $ is given by:
$\theta + n \left( 360^\circ \right) $
Complete step by step solution:
We are given the measure of an angle in degrees. First, we will find the reference angle to convert the given angle between$0$ to $90^\circ $.
For this, we will divide $750^\circ $ by $360^\circ $.
$ \Rightarrow 750^\circ \div 360^\circ = 2.08$
This means two cycles fit within the angle.
$ \Rightarrow 360^\circ \times 2 = 720^\circ $
Now, the angle which is left over $ \Rightarrow 750^\circ - 720^\circ = 30^\circ $
Thus, the reference angle is $30^\circ $
Therefore, the value of sine $750^\circ $ is equal to sine $30^\circ $
$ \Rightarrow \sin 750^\circ = \sin 30^\circ $
Substitute the value of $\sin 30^\circ = \dfrac{1}{2}$
$ \Rightarrow \sin 750^\circ = \dfrac{1}{2}$
$ \Rightarrow \sin 750^\circ = 0.5$
Similarly we will find the value of cosine $750^\circ $.
$ \Rightarrow \cos 750^\circ = \cos 30^\circ $
Substitute the value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \cos 750^\circ = \dfrac{{\sqrt 3 }}{2}$
Now, simplify the expression.
$ \Rightarrow \cos 750^\circ = 0.866$
Now, we will find the value of tan $750^\circ $ using the trigonometric identity, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \tan 750^\circ = \dfrac{{\sin 750^\circ }}{{\cos 750^\circ }}$
Now, substitute the values into the expression.
$ \Rightarrow \tan 750^\circ = \dfrac{{0.5}}{{0.866}}$
$ \Rightarrow \tan 750^\circ = 0.577$
Hence, the value of sine, cosine and tangent of $750^\circ $ is $0.5$, $0.866$ and $0.577$ respectively.
Note: Students must remember that we have used the trigonometric values of a particular measure of an angle. Here, the value of $\sin 30^\circ = \dfrac{1}{2}$ and the value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$. Students may note that we will find the reference angle by dividing the given angle by $2\pi $.
Formula used:
The reference angle for the angle $\theta $ is given by:
$\theta + n \left( 360^\circ \right) $
Complete step by step solution:
We are given the measure of an angle in degrees. First, we will find the reference angle to convert the given angle between$0$ to $90^\circ $.
For this, we will divide $750^\circ $ by $360^\circ $.
$ \Rightarrow 750^\circ \div 360^\circ = 2.08$
This means two cycles fit within the angle.
$ \Rightarrow 360^\circ \times 2 = 720^\circ $
Now, the angle which is left over $ \Rightarrow 750^\circ - 720^\circ = 30^\circ $
Thus, the reference angle is $30^\circ $
Therefore, the value of sine $750^\circ $ is equal to sine $30^\circ $
$ \Rightarrow \sin 750^\circ = \sin 30^\circ $
Substitute the value of $\sin 30^\circ = \dfrac{1}{2}$
$ \Rightarrow \sin 750^\circ = \dfrac{1}{2}$
$ \Rightarrow \sin 750^\circ = 0.5$
Similarly we will find the value of cosine $750^\circ $.
$ \Rightarrow \cos 750^\circ = \cos 30^\circ $
Substitute the value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \cos 750^\circ = \dfrac{{\sqrt 3 }}{2}$
Now, simplify the expression.
$ \Rightarrow \cos 750^\circ = 0.866$
Now, we will find the value of tan $750^\circ $ using the trigonometric identity, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \tan 750^\circ = \dfrac{{\sin 750^\circ }}{{\cos 750^\circ }}$
Now, substitute the values into the expression.
$ \Rightarrow \tan 750^\circ = \dfrac{{0.5}}{{0.866}}$
$ \Rightarrow \tan 750^\circ = 0.577$
Hence, the value of sine, cosine and tangent of $750^\circ $ is $0.5$, $0.866$ and $0.577$ respectively.
Note: Students must remember that we have used the trigonometric values of a particular measure of an angle. Here, the value of $\sin 30^\circ = \dfrac{1}{2}$ and the value of $\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}$. Students may note that we will find the reference angle by dividing the given angle by $2\pi $.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

