
How do you evaluate $\sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$?
Answer
560.7k+ views
Hint: First apply the formula of sine, $\sin 2x = 2\sin x\cos x$. Then, cancel out cosine inverse with cosine. After that convert cosine inverse into sine inverse by the formula ${\sin ^2}x + {\cos ^2}x = 1$. Also, cancel out sine with sine inverse. After that, multiply the terms to get the desired result.
Complete step-by-step solution:
The given expression is $\sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$.
We know that,
$\sin 2x = 2\sin x\cos x$
Apply the above identity in the expression,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = 2\sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$
Cancel out cosine with cosine inverse,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = 2\sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] \times \dfrac{3}{5}$
Multiply the terms,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{6}{5}\sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$...............….. (1)
Now let us assume $x = {\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right)$.
Take cos on both sides,
$ \Rightarrow \cos x = \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right)$
Cancel out cosine with cosine inverse,
$ \Rightarrow \cos x = \dfrac{3}{5}$
We know that,
${\sin ^2}x + {\cos ^2}x = 1$
Substitute the value in the above formula,
$ \Rightarrow {\sin ^2}x + {\left( {\dfrac{3}{5}} \right)^2} = 1$
Square the term,
$ \Rightarrow {\sin ^2}x + \dfrac{9}{{25}} = 1$
Move constant part on the right side,
$ \Rightarrow {\sin ^2}x = 1 - \dfrac{9}{{25}}$
Take LCM on the right side,
$ \Rightarrow {\sin ^2}x = \dfrac{{25 - 9}}{{25}}$
Simplify the term,
$ \Rightarrow {\sin ^2}x = \dfrac{{16}}{{25}}$
Take the square root on both sides,
$ \Rightarrow \sin x = \dfrac{4}{5}$
Take ${\sin ^{ - 1}}$ on both sides,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin x} \right) = {\sin ^{ - 1}}\dfrac{4}{5}$
Cancel out sine inverse with sine,
$ \Rightarrow x = {\sin ^{ - 1}}\dfrac{4}{5}$
Then, we can say that,
$ \Rightarrow {\cos ^{ - 1}}\dfrac{3}{5} = {\sin ^{ - 1}}\dfrac{4}{5}$
Substitute the values in equation (1),
\[ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{6}{5}\sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
Cancel out sine inverse with sine,
\[ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{6}{5} \times \dfrac{4}{5}\]
Multiply the terms,
\[ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{{24}}{{25}}\]
Hence, the value of \[\sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]\] is \[\dfrac{{24}}{{25}}\].
Note: Inverse trigonometry formulas can help you solve any related questions. Just as addition is an inverse of subtraction and multiplication is an inverse of division, in the same way, inverse functions in an inverse trigonometric function. We can call it by different names such as anti-trigonometric functions, arcus functions, and cyclometric functions. The inverse trigonometric functions are as popular as anti-trigonometric functions. The inverse functions have the same name as functions but with a prefix “arc” so the inverse of sine will be arcsine, the inverse of cosine will be arccosine, and tangent will be arctangent.
Complete step-by-step solution:
The given expression is $\sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$.
We know that,
$\sin 2x = 2\sin x\cos x$
Apply the above identity in the expression,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = 2\sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$
Cancel out cosine with cosine inverse,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = 2\sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] \times \dfrac{3}{5}$
Multiply the terms,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{6}{5}\sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]$...............….. (1)
Now let us assume $x = {\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right)$.
Take cos on both sides,
$ \Rightarrow \cos x = \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right)$
Cancel out cosine with cosine inverse,
$ \Rightarrow \cos x = \dfrac{3}{5}$
We know that,
${\sin ^2}x + {\cos ^2}x = 1$
Substitute the value in the above formula,
$ \Rightarrow {\sin ^2}x + {\left( {\dfrac{3}{5}} \right)^2} = 1$
Square the term,
$ \Rightarrow {\sin ^2}x + \dfrac{9}{{25}} = 1$
Move constant part on the right side,
$ \Rightarrow {\sin ^2}x = 1 - \dfrac{9}{{25}}$
Take LCM on the right side,
$ \Rightarrow {\sin ^2}x = \dfrac{{25 - 9}}{{25}}$
Simplify the term,
$ \Rightarrow {\sin ^2}x = \dfrac{{16}}{{25}}$
Take the square root on both sides,
$ \Rightarrow \sin x = \dfrac{4}{5}$
Take ${\sin ^{ - 1}}$ on both sides,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin x} \right) = {\sin ^{ - 1}}\dfrac{4}{5}$
Cancel out sine inverse with sine,
$ \Rightarrow x = {\sin ^{ - 1}}\dfrac{4}{5}$
Then, we can say that,
$ \Rightarrow {\cos ^{ - 1}}\dfrac{3}{5} = {\sin ^{ - 1}}\dfrac{4}{5}$
Substitute the values in equation (1),
\[ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{6}{5}\sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]\]
Cancel out sine inverse with sine,
\[ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{6}{5} \times \dfrac{4}{5}\]
Multiply the terms,
\[ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right] = \dfrac{{24}}{{25}}\]
Hence, the value of \[\sin \left[ {2{{\cos }^{ - 1}}\left( {\dfrac{3}{5}} \right)} \right]\] is \[\dfrac{{24}}{{25}}\].
Note: Inverse trigonometry formulas can help you solve any related questions. Just as addition is an inverse of subtraction and multiplication is an inverse of division, in the same way, inverse functions in an inverse trigonometric function. We can call it by different names such as anti-trigonometric functions, arcus functions, and cyclometric functions. The inverse trigonometric functions are as popular as anti-trigonometric functions. The inverse functions have the same name as functions but with a prefix “arc” so the inverse of sine will be arcsine, the inverse of cosine will be arccosine, and tangent will be arctangent.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

