
How do you evaluate $\sin \left( {11\dfrac{\pi }{2}} \right)$?
Answer
544.5k+ views
Hint: This problem deals with evaluating the value of the given trigonometric function. In order to solve this some basic trigonometric identities and properties of trigonometric angles are used. Such as the values of the trigonometric angles in different quadrants. Formulas which are used here are:
$ \Rightarrow \sin \left( {2\pi - \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {\dfrac{\pi }{2}} \right) = 1$
Complete step-by-step solution:
Given a trigonometric function of an angle.
The given angle is equal to $\dfrac{{11\pi }}{2}$.
The trigonometric ratio is sine trigonometric function.
We know that the value of the function $\sin \left( {2\pi - \theta } \right)$ is a negative value of the sine trigonometric ratio of the given value of the angle, which is equal to $\sin \left( { - \theta } \right)$ which is eventually equal to $ - \sin \left( \theta \right)$.
The given value of the trigonometric function is $\sin \left( {11\dfrac{\pi }{2}} \right)$, consider it as shown below:
$ \Rightarrow \sin \left( {11\dfrac{\pi }{2}} \right)$
The above value of angle of the sine trigonometric function can be rewritten as shown below:
$ \Rightarrow \sin \left( {11\dfrac{\pi }{2}} \right) = \sin \left( {2\pi - \dfrac{\pi }{2}} \right)$
We know that the value of $\sin \left( {2\pi - \theta } \right)$ is equal to $ - \sin \left( \theta \right)$, hence applying this property to the above expression, as shown below:
$ \Rightarrow \sin \left( {2\pi - \dfrac{\pi }{2}} \right) = \sin \left( { - \dfrac{\pi }{2}} \right)$
We know that the value of $\sin \left( { - \theta } \right) = - \sin \left( \theta \right)$, as shown below:
$ \Rightarrow \sin \left( {2\pi - \dfrac{\pi }{2}} \right) = - \sin \left( {\dfrac{\pi }{2}} \right)$
We know that value of $\sin \left( {\dfrac{\pi }{2}} \right) = 1$, so substituting this in the above expression a shown below:
$ \Rightarrow \sin \left( {2\pi - \dfrac{\pi }{2}} \right) = - 1$
So the value of the given expression which is $\sin \left( {11\dfrac{\pi }{2}} \right)$ is equal to $\sin \left( {2\pi - \dfrac{\pi }{2}} \right)$ which is eventually equal to -1.
$\therefore \sin \left( {11\dfrac{\pi }{2}} \right) = - 1$
The value of $\sin \left( {11\dfrac{\pi }{2}} \right) = - 1$.
Note: Please note that the above problem is solved with the help of some basic trigonometric angle properties and some trigonometric identities. Here all the values of sine trigonometric angles of all the four quadrants which are present in the coordinate system are given below:
$ \Rightarrow \sin \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \left( {\dfrac{\pi }{2} + \theta } \right) = \sin \theta $
$ \Rightarrow \sin \left( {\pi - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \left( {\pi + \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {2\pi - \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {2\pi - \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {\dfrac{\pi }{2}} \right) = 1$
Complete step-by-step solution:
Given a trigonometric function of an angle.
The given angle is equal to $\dfrac{{11\pi }}{2}$.
The trigonometric ratio is sine trigonometric function.
We know that the value of the function $\sin \left( {2\pi - \theta } \right)$ is a negative value of the sine trigonometric ratio of the given value of the angle, which is equal to $\sin \left( { - \theta } \right)$ which is eventually equal to $ - \sin \left( \theta \right)$.
The given value of the trigonometric function is $\sin \left( {11\dfrac{\pi }{2}} \right)$, consider it as shown below:
$ \Rightarrow \sin \left( {11\dfrac{\pi }{2}} \right)$
The above value of angle of the sine trigonometric function can be rewritten as shown below:
$ \Rightarrow \sin \left( {11\dfrac{\pi }{2}} \right) = \sin \left( {2\pi - \dfrac{\pi }{2}} \right)$
We know that the value of $\sin \left( {2\pi - \theta } \right)$ is equal to $ - \sin \left( \theta \right)$, hence applying this property to the above expression, as shown below:
$ \Rightarrow \sin \left( {2\pi - \dfrac{\pi }{2}} \right) = \sin \left( { - \dfrac{\pi }{2}} \right)$
We know that the value of $\sin \left( { - \theta } \right) = - \sin \left( \theta \right)$, as shown below:
$ \Rightarrow \sin \left( {2\pi - \dfrac{\pi }{2}} \right) = - \sin \left( {\dfrac{\pi }{2}} \right)$
We know that value of $\sin \left( {\dfrac{\pi }{2}} \right) = 1$, so substituting this in the above expression a shown below:
$ \Rightarrow \sin \left( {2\pi - \dfrac{\pi }{2}} \right) = - 1$
So the value of the given expression which is $\sin \left( {11\dfrac{\pi }{2}} \right)$ is equal to $\sin \left( {2\pi - \dfrac{\pi }{2}} \right)$ which is eventually equal to -1.
$\therefore \sin \left( {11\dfrac{\pi }{2}} \right) = - 1$
The value of $\sin \left( {11\dfrac{\pi }{2}} \right) = - 1$.
Note: Please note that the above problem is solved with the help of some basic trigonometric angle properties and some trigonometric identities. Here all the values of sine trigonometric angles of all the four quadrants which are present in the coordinate system are given below:
$ \Rightarrow \sin \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \left( {\dfrac{\pi }{2} + \theta } \right) = \sin \theta $
$ \Rightarrow \sin \left( {\pi - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \left( {\pi + \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {\dfrac{{3\pi }}{2} - \theta } \right) = - \sin \theta $
$ \Rightarrow \sin \left( {2\pi - \theta } \right) = - \sin \theta $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

